Switch to: References

Add citations

You must login to add citations.
  1. Advancements in AI for Medical Imaging: Transforming Diagnosis and Treatment.Zakaria K. D. Alkayyali, Ashraf M. H. Taha, Qasem M. M. Zarandah, Bassem S. Abunasser, Alaa M. Barhoom & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research(Ijaer) 8 (8):8-15.
    Abstract: The integration of Artificial Intelligence (AI) into medical imaging represents a transformative shift in healthcare, offering significant improvements in diagnostic accuracy, efficiency, and patient outcomes. This paper explores the application of AI technologies in the analysis of medical images, focusing on techniques such as convolutional neural networks (CNNs) and deep learning models. We discuss how these technologies are applied to various imaging modalities, including X-rays, MRIs, and CT scans, to enhance disease detection, image segmentation, and diagnostic support. Additionally, the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • AI-Driven Learning: Advances and Challenges in Intelligent Tutoring Systems.Amjad H. Alfarra, Lamis F. Amhan, Msbah J. Mosa, Mahmoud Ali Alajrami, Faten El Kahlout, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):24-29.
    Abstract: The incorporation of Artificial Intelligence (AI) into educational technology has dramatically transformed learning through Intelligent Tutoring Systems (ITS). These systems utilize AI to offer personalized, adaptive instruction tailored to each student's needs, thereby improving learning outcomes and engagement. This paper examines the development and impact of ITS, focusing on AI technologies such as machine learning, natural language processing, and adaptive algorithms that drive their functionality. Through various case studies and applications, it illustrates how ITS have revolutionized traditional educational methods (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • AI in Climate Change Mitigation.Mohammad Alnajjar, Mohammed Hazem M. Hamadaqa, Mohammed N. Ayyad, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Engineering Research (IJAER) 8 (10):31-37.
    Abstract: Climate change presents a critical challenge that demands advanced analytical tools to predict and mitigate its impacts. This paper explores the role of artificial intelligence (AI) in enhancing climate modeling, emphasizing how AI-driven methods are revolutionizing our understanding and response to climate change. By integrating machine learning algorithms with diverse data sources such as satellite imagery, historical climate records, and real-time sensor data, AI improves the accuracy, efficiency, and granularity of climate predictions. The paper reviews key AI techniques, including (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Artificial Intelligence in Digital Media: Opportunities, Challenges, and Future Directions.Basma S. Abu Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic and Applied Research (IJAAR) 8 (6):1-10.
    Abstract: This research paper explores the transformative impact of artificial intelligence (AI) on digital media, examining both the opportunities it presents and the challenges it poses. The integration of AI into digital media has revolutionized content creation, distribution, and analytics, offering unprecedented levels of personalization, efficiency, and insight. Automated journalism, AI- driven recommendation systems, and advanced audience analytics are among the key areas where AI is making significant contributions. However, the adoption of AI also brings ethical considerations, including concerns about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Leveraging Artificial Neural Networks for Cancer Prediction: A Synthetic Dataset Approach.Mohammed S. Abu Nasser & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (11):43-51.
    Abstract: This research explores the application of artificial neural networks (ANNs) in predicting cancer using a synthetically generated dataset designed for research purposes. The dataset comprises 10,000 pseudo-patient records, each characterized by gender, age, smoking history, fatigue, and allergy status, along with a binary indicator for the presence or absence of cancer. The 'Gender,' 'Smoking,' 'Fatigue,' and 'Allergy' attributes are binary, while 'Age' spans a range from 18 to 100 years. The study employs a three-layer ANN architecture to develop a (...)
    Download  
     
    Export citation  
     
    Bookmark