Switch to: References

Add citations

You must login to add citations.
  1. The Parthenon and liberal education.Geoff Lehman - 2018 - Albany: SUNY Press. Edited by Michael Weinman.
    Discusses the importance of the early history of Greek mathematics to education and civic life through a study of the Parthenon and dialogues of Plato.
    Download  
     
    Export citation  
     
    Bookmark  
  • Operationalism: An Interpretation of the Philosophy of Ancient Greek Geometry.Viktor Blåsjö - 2022 - Foundations of Science 27 (2):587-708.
    I present a systematic interpretation of the foundational purpose of constructions in ancient Greek geometry. I argue that Greek geometers were committed to an operationalist foundational program, according to which all of mathematics—including its entire ontology and epistemology—is based entirely on concrete physical constructions. On this reading, key foundational aspects of Greek geometry are analogous to core tenets of 20th-century operationalist/positivist/constructivist/intuitionist philosophy of science and mathematics. Operationalism provides coherent answers to a range of traditional philosophical problems regarding classical mathematics, such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two Approaches to Foundations in Greek Mathematics: Apollonius and Geminus.Fabio Acerbi - 2010 - Science in Context 23 (2):151-186.
    ArgumentThis article is the sequel to an article published in the previous issue ofScience in Contextthat dealt with homeomeric lines (Acerbi 2010). The present article deals with foundational issues in Greek mathematics. It considers two key characters in the study of mathematical homeomery, namely, Apollonius and Geminus, and analyzes in detail their approaches to foundational themes as they are attested in ancient sources. The main historiographical result of this paper is to show thatthere wasa well-establishedmathematicalfield of discourse in “foundations of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Uses of construction in problems and theorems in Euclid’s Elements I–VI.Nathan Sidoli - 2018 - Archive for History of Exact Sciences 72 (4):403-452.
    In this paper, I present an interpretation of the use of constructions in both the problems and theorems of Elements I–VI, in light of the concept of given as developed in the Data, that makes a distinction between the way that constructions are used in problems, problem-constructions, and the way that they are used in theorems and in the proofs of problems, proof-constructions. I begin by showing that the general structure of a problem is slightly different from that stated by (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Euclid’s Common Notions and the Theory of Equivalence.Vincenzo De Risi - 2020 - Foundations of Science 26 (2):301-324.
    The “common notions” prefacing the Elements of Euclid are a very peculiar set of axioms, and their authenticity, as well as their actual role in the demonstrations, have been object of debate. In the first part of this essay, I offer a survey of the evidence for the authenticity of the common notions, and conclude that only three of them are likely to have been in place at the times of Euclid, whereas others were added in Late Antiquity. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations