Switch to: References

Add citations

You must login to add citations.
  1. On Transferring Model Theoretic Theorems of $${\mathcal{L}_{{\infty},\omega}}$$ L ∞, ω in the Category of Sets to a Fixed Grothendieck Topos.Nathanael Leedom Ackerman - 2014 - Logica Universalis 8 (3-4):345-391.
    Working in a fixed Grothendieck topos Sh(C, J C ) we generalize \({\mathcal{L}_{{\infty},\omega}}\) to allow our languages and formulas to make explicit reference to Sh(C, J C ). We likewise generalize the notion of model. We then show how to encode these generalized structures by models of a related sentence of \({\mathcal{L}_{{\infty},\omega}}\) in the category of sets and functions. Using this encoding we prove analogs of several results concerning \({\mathcal{L}_{{\infty},\omega}}\) , such as the downward Löwenheim–Skolem theorem, the completeness theorem and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Encoding Complete Metric Structures by Classical Structures.Nathanael Leedom Ackerman - 2020 - Logica Universalis 14 (4):421-459.
    We show how to encode, by classical structures, both the objects and the morphisms of the category of complete metric spaces and uniformly continuous maps. The result is a category of, what we call, cognate metric spaces and cognate maps. We show this category relativizes to all models of set theory. We extend this encoding to an encoding of complete metric structures by classical structures. This provide us with a general technique for translating results about infinitary logic on classical structures (...)
    Download  
     
    Export citation  
     
    Bookmark