Switch to: References

Add citations

You must login to add citations.
  1. A dedekind finite borel set.Arnold W. Miller - 2011 - Archive for Mathematical Logic 50 (1-2):1-17.
    In this paper we prove three theorems about the theory of Borel sets in models of ZF without any form of the axiom of choice. We prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\subseteq 2^\omega}$$\end{document} is a Gδσ-set then either B is countable or B contains a perfect subset. Second, we prove that if 2ω is the countable union of countable sets, then there exists an Fσδ set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dedekind-Finite Cardinals Having Countable Partitions.Supakun Panasawatwong & John Kenneth Truss - forthcoming - Journal of Symbolic Logic:1-16.
    We study the possible structures which can be carried by sets which have no countable subset, but which fail to be ‘surjectively Dedekind finite’, in two possible senses, that there is surjection to $\omega $, or alternatively, that there is a surjection to a proper superset.
    Download  
     
    Export citation  
     
    Bookmark