Switch to: References

Add citations

You must login to add citations.
  1. The cardinality of the partitions of a set in the absence of the Axiom of Choice.Palagorn Phansamdaeng & Pimpen Vejjajiva - 2023 - Logic Journal of the IGPL 31 (6):1225-1231.
    In the Zermelo–Fraenkel set theory (ZF), |$|\textrm {fin}(A)|<2^{|A|}\leq |\textrm {Part}(A)|$| for any infinite set |$A$|⁠, where |$\textrm {fin}(A)$| is the set of finite subsets of |$A$|⁠, |$2^{|A|}$| is the cardinality of the power set of |$A$| and |$\textrm {Part}(A)$| is the set of partitions of |$A$|⁠. In this paper, we show in ZF that |$|\textrm {fin}(A)|<|\textrm {Part}_{\textrm {fin}}(A)|$| for any set |$A$| with |$|A|\geq 5$|⁠, where |$\textrm {Part}_{\textrm {fin}}(A)$| is the set of partitions of |$A$| whose members are finite. We (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The permutations with N non-fixed points and the sequences with length N of a set.Jukkrid Nuntasri & Pimpen Vejjajiva - 2024 - Journal of Symbolic Logic 89 (3):1067-1076.
    We write $\mathcal {S}_n(A)$ for the set of permutations of a set A with n non-fixed points and $\mathrm {{seq}}^{1-1}_n(A)$ for the set of one-to-one sequences of elements of A with length n where n is a natural number greater than $1$. With the Axiom of Choice, $|\mathcal {S}_n(A)|$ and $|\mathrm {{seq}}^{1-1}_n(A)|$ are equal for all infinite sets A. Among our results, we show, in ZF, that $|\mathcal {S}_n(A)|\leq |\mathrm {{seq}}^{1-1}_n(A)|$ for any infinite set A if ${\mathrm {AC}}_{\leq n}$ is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations