Switch to: References

Add citations

You must login to add citations.
  1. Automating Leibniz's Theory of Concepts.Jesse Alama, Paul Edward Oppenheimer & Edward Zalta - 2015 - In Felty Amy P. & Middeldorp Aart (eds.), Automated Deduction – CADE 25: Proceedings of the 25th International Conference on Automated Deduction (Lecture Notes in Artificial Intelligence: Volume 9195), Berlin: Springer. Springer. pp. 73-97.
    Our computational metaphysics group describes its use of automated reasoning tools to study Leibniz’s theory of concepts. We start with a reconstruction of Leibniz’s theory within the theory of abstract objects (henceforth ‘object theory’). Leibniz’s theory of concepts, under this reconstruction, has a non-modal algebra of concepts, a concept-containment theory of truth, and a modal metaphysics of complete individual concepts. We show how the object-theoretic reconstruction of these components of Leibniz’s theory can be represented for investigation by means of automated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Case for the Irreducibility of Geometry to Algebra†.Victor Pambuccian & Celia Schacht - 2022 - Philosophia Mathematica 30 (1):1-31.
    This paper provides a definitive answer, based on considerations derived from first-order logic, to the question regarding the status of elementary geometry, whether elementary geometry can be reduced to algebra. The answer we arrive at is negative, and is based on a series of structural questions that can be asked only inside the geometric formal theory, as well as the consideration of reverse geometry, which is the art of finding minimal axiom systems strong enough to prove certain geometrical theorems, given (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Hilbert’s 24th Problem?Isabel Oitavem & Reinhard Kahle - 2018 - Kairos 20 (1):1-11.
    In 2000, a draft note of David Hilbert was found in his Nachlass concerning a 24th problem he had consider to include in the his famous problem list of the talk at the International Congress of Mathematicians in 1900 in Paris. This problem concerns simplicity of proofs. In this paper we review the traces of this problem which one can find in the work of Hilbert and his school, as well as modern research started on it after its publication. We (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation