Switch to: References

Add citations

You must login to add citations.
  1. Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Paradoxes of Interaction?Johannes Stern & Martin Fischer - 2015 - Journal of Philosophical Logic 44 (3):287-308.
    Since Montague’s work it is well known that treating a single modality as a predicate may lead to paradox. In their paper “No Future”, Horsten and Leitgeb show that if the two temporal modalities are treated as predicates paradox might arise as well. In our paper we investigate whether paradoxes of multiple modalities, such as the No Future paradox, are genuinely new paradoxes or whether they “reduce” to the paradoxes of single modalities. In order to address this question we develop (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Modal μ-Calculus Hierarchy over Restricted Classes of Transition Systems.Luca Alberucci & Alessandro Facchini - 2009 - Journal of Symbolic Logic 74 (4):1367 - 1400.
    We study the strictness of the modal μ-calculus hierarchy over some restricted classes of transition systems. First, we prove that over transitive systems the hierarchy collapses to the alternationfree fragment. In order to do this the finite model theorem for transitive transition systems is proved. Further, we verify that if symmetry is added to transitivity the hierarchy collapses to the purely modal fragment. Finally, we show that the hierarchy is strict over reflexive frames. By proving the finite model theorem for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations