Switch to: References

Add citations

You must login to add citations.
  1. Every zero-dimensional homogeneous space is strongly homogeneous under determinacy.Raphaël Carroy, Andrea Medini & Sandra Müller - 2020 - Journal of Mathematical Logic 20 (3):2050015.
    All spaces are assumed to be separable and metrizable. We show that, assuming the Axiom of Determinacy, every zero-dimensional homogeneous space is strongly homogeneous (i.e. all its non-empty clopen subspaces are homeomorphic), with the trivial exception of locally compact spaces. In fact, we obtain a more general result on the uniqueness of zero-dimensional homogeneous spaces which generate a given Wadge class. This extends work of van Engelen (who obtained the corresponding results for Borel spaces), complements a result of van Douwen, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Zero-dimensional σ-homogeneous spaces.Andrea Medini & Zoltán Vidnyánszky - 2024 - Annals of Pure and Applied Logic 175 (1):103331.
    Download  
     
    Export citation  
     
    Bookmark  
  • Constructing wadge classes.Raphaël Carroy, Andrea Medini & Sandra Müller - 2022 - Bulletin of Symbolic Logic 28 (2):207-257.
    We show that, assuming the Axiom of Determinacy, every non-selfdual Wadge class can be constructed by starting with those of level $\omega _1$ and iteratively applying the operations of expansion and separated differences. The proof is essentially due to Louveau, and it yields at the same time a new proof of a theorem of Van Wesep. The exposition is self-contained, except for facts from classical descriptive set theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation