Switch to: References

Add citations

You must login to add citations.
  1. Bounded arithmetic for NC, ALogTIME, L and NL.P. Clote & G. Takeuti - 1992 - Annals of Pure and Applied Logic 56 (1-3):73-117.
    We define theories of bounded arithmetic, whose definable functions and relations are exactly those in certain complexity classes. Based on a recursion-theoretic characterization of NC in Clote , the first-order theory TNC, whose principal axiom scheme is a form of short induction on notation for nondeterministic polynomial-time computable relations, has the property that those functions having nondeterministic polynomial-time graph Θ such that TNC x y Θ are exactly the functions in NC, computable on a parallel random-access machine in polylogarithmic parallel (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On parallel hierarchies and Rki.Stephen Bloch - 1997 - Annals of Pure and Applied Logic 89 (2-3):231-273.
    This paper defines natural hierarchies of function and relation classes □i,kc and Δi,kc, constructed from parallel complexity classes in a manner analogous to the polynomial-time hierarchy. It is easily shown that □i−1,kp □c,kc □i,kp and similarly for the Δ classes. The class □i,3c coincides with the single-valued functions in Buss et al.'s class , and analogously for other growth rates. Furthermore, the class □i,kc comprises exactly the functions Σi,kb-definable in Ski−1, and if Tki−1 is Σi,kb-conservative over Ski−1, then □i,kp is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (5 other versions)X Latin American Symposium on Mathematical Logic.Xavier Caicedo - 1996 - Bulletin of Symbolic Logic 2 (2):214-237.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • RSUV isomorphisms for TAC i , TNC i and TLS.G. Takeuti - 1995 - Archive for Mathematical Logic 33 (6):427-453.
    We investigate the second order bounded arithmetical systems which is isomorphic to TAC i , TNC i or TLS.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the finite axiomatizability of.Chris Pollett - 2018 - Mathematical Logic Quarterly 64 (1-2):6-24.
    The question of whether the bounded arithmetic theories and are equal is closely connected to the complexity question of whether is equal to. In this paper, we examine the still open question of whether the prenex version of,, is equal to. We give new dependent choice‐based axiomatizations of the ‐consequences of and. Our dependent choice axiomatizations give new normal forms for the ‐consequences of and. We use these axiomatizations to give an alternative proof of the finite axiomatizability of and to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conservative fragments of $${{S}^{1}{2}}$$ and $${{R}^{1}{2}}$$. [REVIEW]Chris Pollett - 2011 - Archive for Mathematical Logic 50 (3):367-393.
    Conservative subtheories of $${{R}^{1}_{2}}$$ and $${{S}^{1}_{2}}$$ are presented. For $${{S}^{1}_{2}}$$, a slight tightening of Jeřábek’s result (Math Logic Q 52(6):613–624, 2006) that $${T^{0}_{2} \preceq_{\forall \Sigma^{b}_{1}}S^{1}_{2}}$$ is presented: It is shown that $${T^{0}_{2}}$$ can be axiomatised as BASIC together with induction on sharply bounded formulas of one alternation. Within this $${\forall\Sigma^{b}_{1}}$$ -theory, we define a $${\forall\Sigma^{b}_{0}}$$ -theory, $${T^{-1}_{2}}$$, for the $${\forall\Sigma^{b}_{0}}$$ -consequences of $${S^{1}_{2}}$$. We show $${T^{-1}_{2}}$$ is weak by showing it cannot $${\Sigma^{b}_{0}}$$ -define division by 3. We then consider what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Construction of models of bounded arithmetic by restricted reduced powers.Michal Garlík - 2016 - Archive for Mathematical Logic 55 (5-6):625-648.
    We present two constructions of models of bounded arithmetic, both in the form of a generalization of the ultrapower construction, that yield nonelementary extensions but do not introduce new lengths. As an application we show, assuming the existence of a one-way permutation g hard against polynomial-size circuits, that strictR21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{strict}R^1_2$$\end{document} is weaker than R21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^1_2$$\end{document}. In particular, if such a permutation can be defined by (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Model of $\widehat{R}^2_3$ inside a Subexponential Time Resource.Eugenio Chinchilla - 1998 - Notre Dame Journal of Formal Logic 39 (3):307-324.
    Using nonstandard methods we construct a model of an induction scheme called inside a "resource" of the form is a Turing machine of code is calculated in less than , where means the length of the binary expansion of and are nonstandard parameters in a model of . As a consequence we obtain a model theoretic proof of a witnessing theorem for this theory by functions computable in time , a result first obtained by Buss, Krajícek, and Takeuti using proof (...)
    Download  
     
    Export citation  
     
    Bookmark