Switch to: References

Add citations

You must login to add citations.
  1. Why the Perceived Flaw in Kempe's 1879 Graphical `Proof' of the Four Colour Theorem is Not Fatal When Expressed Geometrically.Bhupinder Singh Anand - manuscript
    All accepted proofs of the Four Colour Theorem (4CT) are computer-dependent; and appeal to the existence, and manual identification, of an ‘unavoidable’ set containing a sufficient number of explicitly defined configurations—each evidenced only by a computer as ‘reducible’—such that at least one of the configurations must occur in any chromatically distinguished, minimal, planar map. For instance, Appel and Haken ‘identified’ 1,482 such configurations in their 1977, computer-dependent, proof of 4CT; whilst Neil Robertson et al ‘identified’ 633 configurations as sufficient in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why there can be no mathematical or meta-mathematical proof of consistency for ZF.Bhupinder Singh Anand - manuscript
    In the first part of this investigation we highlight two, seemingly irreconcilable, beliefs that suggest an impending crisis in the teaching, research, and practice of—primarily state-supported—mathematics: (a) the belief, with increasing, essentially faith-based, conviction and authority amongst academics that first-order Set Theory can be treated as the lingua franca of mathematics, since its theorems—even if unfalsifiable—can be treated as ‘knowledge’ because they are finite proof sequences which are entailed finitarily by self-evidently Justified True Beliefs; and (b) the slowly emerging, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why did Fermat believe he had `a truly marvellous demonstration' of FLT?Bhupinder Singh Anand - manuscript
    Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary, and sufficient, for entailing `significant' mathematical truths only if the proofs are expressed in a---minimally, deemed consistent---formal mathematical theory in terms of: * Axioms/Axiom schemas * Rules of Deduction * Definitions * Lemmas * Theorems * Corollaries. Whilst Andrew Wiles' proof of Fermat's Last Theorem FLT, which appeals essentially to geometrical properties of real and complex numbers, can be treated as meeting this criteria, it nevertheless leaves two (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Elementary, Pre-formal, Proof of FLT: Why is x^n+y^n=z^n solvable only for n<3?Bhupinder Singh Anand - manuscript
    Andrew Wiles' analytic proof of Fermat's Last Theorem FLT, which appeals to geometrical properties of real and complex numbers, leaves two questions unanswered: (i) What technique might Fermat have used that led him to, even if only briefly, believe he had `a truly marvellous demonstration' of FLT? (ii) Why is x^n+y^n=z^n solvable only for n<3? In this inter-disciplinary perspective, we offer insight into, and answers to, both queries; yielding a pre-formal proof of why FLT can be treated as a true (...)
    Download  
     
    Export citation  
     
    Bookmark