Switch to: References

Add citations

You must login to add citations.
  1. On notions of representability for cylindric‐polyadic algebras, and a solution to the finitizability problem for quantifier logics with equality.Tarek Sayed Ahmed - 2015 - Mathematical Logic Quarterly 61 (6):418-477.
    We consider countable so‐called rich subsemigroups of ; each such semigroup T gives a variety CPEAT that is axiomatizable by a finite schema of equations taken in a countable subsignature of that of ω‐dimensional cylindric‐polyadic algebras with equality where substitutions are restricted to maps in T. It is shown that for any such T, if and only if is representable as a concrete set algebra of ω‐ary relations. The operations in the signature are set‐theoretically interpreted like in polyadic equality set (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Decidability of cylindric set algebras of dimension two and first-order logic with two variables.Maarten Marx & Szabolcs Mikulas - 1999 - Journal of Symbolic Logic 64 (4):1563-1572.
    The aim of this paper is to give a new proof for the decidability and finite model property of first-order logic with two variables (without function symbols), using a combinatorial theorem due to Herwig. The results are proved in the framework of polyadic equality set algebras of dimension two (Pse 2 ). The new proof also shows the known results that the universal theory of Pse 2 is decidable and that every finite Pse 2 can be represented on a finite (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relation algebras from cylindric algebras, I.Robin Hirsch & Ian Hodkinson - 2001 - Annals of Pure and Applied Logic 112 (2-3):225-266.
    We characterise the class S Ra CA n of subalgebras of relation algebra reducts of n -dimensional cylindric algebras by the notion of a ‘hyperbasis’, analogous to the cylindric basis of Maddux, and by representations. We outline a game–theoretic approximation to the existence of a representation, and how to use it to obtain a recursive axiomatisation of S Ra CA n.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The semijoin algebra and the guarded fragment.Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz & Jan Van den Bussche - 2005 - Journal of Logic, Language and Information 14 (3):331-343.
    In the 1970s Codd introduced the relational algebra, with operators selection, projection, union, difference and product, and showed that it is equivalent to first-order logic. In this paper, we show that if we replace in Codd’s relational algebra the product operator by the “semijoin” operator, then the resulting “semijoin algebra” is equivalent to the guarded fragment of first-order logic. We also define a fixed point extension of the semijoin algebra that corresponds to μGF.
    Download  
     
    Export citation  
     
    Bookmark  
  • First order logic without equality on relativized semantics.Amitayu Banerjee & Mohamed Khaled - 2018 - Annals of Pure and Applied Logic 169 (11):1227-1242.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Weakly associative relation algebras with projections.Agi Kurucz - 2009 - Mathematical Logic Quarterly 55 (2):138-153.
    Built on the foundations laid by Peirce, Schröder, and others in the 19th century, the modern development of relation algebras started with the work of Tarski and his colleagues [21, 22]. They showed that relation algebras can capture strong first‐order theories like ZFC, and so their equational theory is undecidable. The less expressive class WA of weakly associative relation algebras was introduced by Maddux [7]. Németi [16] showed that WA's have a decidable universal theory. There has been extensive research on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Arrow logic and infinite counting.Ágnes Kurucz - 2000 - Studia Logica 65 (2):199-222.
    We consider arrow logics (i.e., propositional multi-modal logics having three -- a dyadic, a monadic, and a constant -- modal operators) augmented with various kinds of infinite counting modalities, such as 'much more', 'of good quantity', 'many times'. It is shown that the addition of these modal operators to weakly associative arrow logic results in finitely axiomatizable and decidable logics, which fail to have the finite base property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Guards, Bounds, and generalized semantics.Johan van Benthem - 2005 - Journal of Logic, Language and Information 14 (3):263-279.
    Some initial motivations for the Guarded Fragment still seem of interest in carrying its program further. First, we stress the equivalence between two perspectives: (a) satisfiability on standard models for guarded first-order formulas, and (b) satisfiability on general assignment models for arbitrary first-order formulas. In particular, we give a new straightforward reduction from the former notion to the latter. We also show how a perspective shift to general assignment models provides a new look at the fixed-point extension LFP(FO) of first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Version of Predicate Logic with Two Variables That has an Incompleteness Property.Mohamed Khaled - forthcoming - Studia Logica:1-23.
    In this paper, we consider predicate logic with two individual variables and general assignment models (where the set of assignments of the variables into a model is allowed to be an arbitrary subset of the usual one). We prove that there is a statement such that no general assignment model in which it is true can be finitely axiomatized. We do this by showing that the free relativized cylindric algebras of dimension two are not atomic.
    Download  
     
    Export citation  
     
    Bookmark