Switch to: References

Add citations

You must login to add citations.
  1. Universal indestructibility for degrees of supercompactness and strongly compact cardinals.Arthur W. Apter & Grigor Sargsyan - 2008 - Archive for Mathematical Logic 47 (2):133-142.
    We establish two theorems concerning strongly compact cardinals and universal indestructibility for degrees of supercompactness. In the first theorem, we show that universal indestructibility for degrees of supercompactness in the presence of a strongly compact cardinal is consistent with the existence of a proper class of measurable cardinals. In the second theorem, we show that universal indestructibility for degrees of supercompactness is consistent in the presence of two non-supercompact strongly compact cardinals, each of which exhibits a significant amount of indestructibility (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some remarks on indestructibility and Hamkins? lottery preparation.Arthur W. Apter - 2003 - Archive for Mathematical Logic 42 (8):717-735.
    .In this paper, we first prove several general theorems about strongness, supercompactness, and indestructibility, along the way giving some new applications of Hamkins’ lottery preparation forcing to indestructibility. We then show that it is consistent, relative to the existence of cardinals κ<λ so that κ is λ supercompact and λ is inaccessible, for the least strongly compact cardinal κ to be the least strong cardinal and to have its strongness, but not its strong compactness, indestructible under κ-strategically closed forcing.
    Download  
     
    Export citation  
     
    Bookmark   4 citations