Switch to: References

Add citations

You must login to add citations.
  1. Consecutive Singular Cardinals and the Continuum Function.Arthur W. Apter & Brent Cody - 2013 - Notre Dame Journal of Formal Logic 54 (2):125-136.
    We show that from a supercompact cardinal $\kappa$, there is a forcing extension $V[G]$ that has a symmetric inner model $N$ in which $\mathrm {ZF}+\lnot\mathrm {AC}$ holds, $\kappa$ and $\kappa^{+}$ are both singular, and the continuum function at $\kappa$ can be precisely controlled, in the sense that the final model contains a sequence of distinct subsets of $\kappa$ of length equal to any predetermined ordinal. We also show that the above situation can be collapsed to obtain a model of $\mathrm (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • All uncountable cardinals in the Gitik model are almost Ramsey and carry Rowbottom filters.Arthur W. Apter, Ioanna M. Dimitriou & Peter Koepke - 2016 - Mathematical Logic Quarterly 62 (3):225-231.
    Using the analysis developed in our earlier paper, we show that every uncountable cardinal in Gitik's model of in which all uncountable cardinals are singular is almost Ramsey and is also a Rowbottom cardinal carrying a Rowbottom filter. We assume that the model of is constructed from a proper class of strongly compact cardinals, each of which is a limit of measurable cardinals. Our work consequently reduces the best previously known upper bound in consistency strength for the theory math formula (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Combinatorial properties and dependent choice in symmetric extensions based on Lévy collapse.Amitayu Banerjee - 2022 - Archive for Mathematical Logic 62 (3):369-399.
    We work with symmetric extensions based on Lévy collapse and extend a few results of Apter, Cody, and Koepke. We prove a conjecture of Dimitriou from her Ph.D. thesis. We also observe that if V is a model of $$\textsf {ZFC}$$ ZFC, then $$\textsf {DC}_{<\kappa }$$ DC < κ can be preserved in the symmetric extension of V in terms of symmetric system $$\langle {\mathbb {P}},{\mathcal {G}},{\mathcal {F}}\rangle $$ ⟨ P, G, F ⟩, if $${\mathbb {P}}$$ P is $$\kappa $$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Remarks on Gitik's model and symmetric extensions on products of the Lévy collapse.Amitayu Banerjee - 2020 - Mathematical Logic Quarterly 66 (3):259-279.
    We improve on results and constructions by Apter, Dimitriou, Gitik, Hayut, Karagila, and Koepke concerning large cardinals, ultrafilters, and cofinalities without the axiom of choice. In particular, we show the consistency of the following statements from certain assumptions: the first supercompact cardinal can be the first uncountable regular cardinal, all successors of regular cardinals are Ramsey, every sequence of stationary sets in is mutually stationary, an infinitary Chang conjecture holds for the cardinals, and all are singular. In each of the (...)
    Download  
     
    Export citation  
     
    Bookmark