Switch to: References

Add citations

You must login to add citations.
  1. Indestructible strong compactness and level by level inequivalence.Arthur W. Apter - 2013 - Mathematical Logic Quarterly 59 (4-5):371-377.
    If are such that δ is indestructibly supercompact and γ is measurable, then it must be the case that level by level inequivalence between strong compactness and supercompactness fails. We prove a theorem which points to this result being best possible. Specifically, we show that relative to the existence of cardinals such that κ1 is λ‐supercompact and λ is inaccessible, there is a model for level by level inequivalence between strong compactness and supercompactness containing a supercompact cardinal in which κ’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness.Arthur W. Apter - 2007 - Archive for Mathematical Logic 46 (3-4):155-163.
    It is known that if $\kappa < \lambda$ are such that κ is indestructibly supercompact and λ is 2λ supercompact, then level by level equivalence between strong compactness and supercompactness fails. We prove a theorem which points towards this result being best possible. Specifically, we show that relative to the existence of a supercompact cardinal, there is a model for level by level equivalence between strong compactness and supercompactness containing a supercompact cardinal κ in which κ’s strong compactness is indestructible (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Identity crisis between supercompactness and vǒpenka’s principle.Yair Hayut, Menachem Magidor & Alejandro Poveda - 2022 - Journal of Symbolic Logic 87 (2):626-648.
    In this paper we study the notion of $C^{}$ -supercompactness introduced by Bagaria in [3] and prove the identity crises phenomenon for such class. Specifically, we show that consistently the least supercompact is strictly below the least $C^{}$ -supercompact but also that the least supercompact is $C^{}$ -supercompact }$ -supercompact). Furthermore, we prove that under suitable hypothesis the ultimate identity crises is also possible. These results solve several questions posed by Bagaria and Tsaprounis.
    Download  
     
    Export citation  
     
    Bookmark  
  • Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Indestructible strong compactness but not supercompactness.Arthur W. Apter, Moti Gitik & Grigor Sargsyan - 2012 - Annals of Pure and Applied Logic 163 (9):1237-1242.
    Download  
     
    Export citation  
     
    Bookmark   2 citations