Switch to: References

Add citations

You must login to add citations.
  1. Proof Theory as an Analysis of Impredicativity( New Developments in Logic: Proof-Theoretic Ordinals and Set-Theoretic Ordinals).Ryota Akiyoshi - 2012 - Journal of the Japan Association for Philosophy of Science 39 (2):93-107.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Simplified Ordinal Analysis of First-Order Reflection.Toshiyasu Arai - 2020 - Journal of Symbolic Logic 85 (3):1163-1185.
    In this note we give a simplified ordinal analysis of first-order reflection. An ordinal notation system$OT$is introduced based on$\psi $-functions. Provable$\Sigma _{1}$-sentences on$L_{\omega _{1}^{CK}}$are bounded through cut-elimination on operator controlled derivations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conservations of first-order reflections.Toshiyasu Arai - 2014 - Journal of Symbolic Logic 79 (3):814-825.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Sneak Preview of Proof Theory of Ordinals.Toshiyasu Arai - 2012 - Annals of the Japan Association for Philosophy of Science 20:29-47.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reading Gentzen's Three Consistency Proofs Uniformly.Ryota Akiyoshi & Yuta Takahashi - 2013 - Journal of the Japan Association for Philosophy of Science 41 (1):1-22.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wellfoundedness proof with the maximal distinguished set.Toshiyasu Arai - 2023 - Archive for Mathematical Logic 62 (3):333-357.
    In Arai (An ordinal analysis of a single stable ordinal, submitted) it is shown that an ordinal \(\sup _{N is an upper bound for the proof-theoretic ordinal of a set theory \(\mathsf {KP}\ell ^{r}+(M\prec _{\Sigma _{1}}V)\). In this paper we show that a second order arithmetic \(\Sigma ^{1-}_{2}{\mathrm {-CA}}+\Pi ^{1}_{1}{\mathrm {-CA}}_{0}\) proves the wellfoundedness up to \(\psi _{\varOmega _{1}}(\varepsilon _{\varOmega _{{\mathbb {S}}+N+1}})\) for each _N_. It is easy to interpret \(\Sigma ^{1-}_{2}{\mathrm {-CA}}+\Pi ^{1}_{1}{\mathrm {-CA}}_{0}\) in \(\mathsf {KP}\ell ^{r}+(M\prec _{\Sigma _{1}}V)\).
    Download  
     
    Export citation  
     
    Bookmark