Switch to: References

Add citations

You must login to add citations.
  1. Strictly Positive Fragments of the Provability Logic of Heyting Arithmetic.Ana de Almeida Borges & Joost J. Joosten - forthcoming - Studia Logica:1-33.
    We determine the strictly positive fragment \(\textsf{QPL}^+(\textsf{HA})\) of the quantified provability logic \(\textsf{QPL}(\textsf{HA})\) of Heyting Arithmetic. We show that \(\textsf{QPL}^+(\textsf{HA})\) is decidable and that it coincides with \(\textsf{QPL}^+(\textsf{PA})\), which is the strictly positive fragment of the quantified provability logic of of Peano Arithmetic. This positively resolves a previous conjecture of the authors described in [ 14 ]. On our way to proving these results, we carve out the strictly positive fragment \(\textsf{PL}^+(\textsf{HA})\) of the provability logic \(\textsf{PL}(\textsf{HA})\) of Heyting Arithmetic, provide (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetical interpretations and Kripke frames of predicate modal logic of provability.Taishi Kurahashi - 2013 - Review of Symbolic Logic 6 (1):1-18.
    Solovay proved the arithmetical completeness theorem for the system GL of propositional modal logic of provability. Montagna proved that this completeness does not hold for a natural extension QGL of GL to the predicate modal logic. Let Th(QGL) be the set of all theorems of QGL, Fr(QGL) be the set of all formulas valid in all transitive and conversely well-founded Kripke frames, and let PL(T) be the set of all predicate modal formulas provable in Tfor any arithmetical interpretation. Montagna’s results (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Escape From Vardanyan’s Theorem.Ana de Almeida Borges & Joost J. Joosten - 2023 - Journal of Symbolic Logic 88 (4):1613-1638.
    Vardanyan’s Theorems [36, 37] state that $\mathsf {QPL}(\mathsf {PA})$ —the quantified provability logic of Peano Arithmetic—is $\Pi ^0_2$ complete, and in particular that this already holds when the language is restricted to a single unary predicate. Moreover, Visser and de Jonge [38] generalized this result to conclude that it is impossible to computably axiomatize the quantified provability logic of a wide class of theories. However, the proof of this fact cannot be performed in a strictly positive signature. The system $\mathsf (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Arithmetically Complete Predicate Modal Logic.Yunge Hao & George Tourlakis - 2021 - Bulletin of the Section of Logic 50 (4):513-541.
    This paper investigates a first-order extension of GL called \. We outline briefly the history that led to \, its key properties and some of its toolbox: the \emph{conservation theorem}, its cut-free Gentzenisation, the ``formulators'' tool. Its semantic completeness is fully stated in the current paper and the proof is retold here. Applying the Solovay technique to those models the present paper establishes its main result, namely, that \ is arithmetically complete. As expanded below, \ is a first-order modal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Predicate counterparts of modal logics of provability: High undecidability and Kripke incompleteness.Mikhail Rybakov - forthcoming - Logic Journal of the IGPL.
    In this paper, the predicate counterparts, defined both axiomatically and semantically by means of Kripke frames, of the modal propositional logics $\textbf {GL}$, $\textbf {Grz}$, $\textbf {wGrz}$ and their extensions are considered. It is proved that the set of semantical consequences on Kripke frames of every logic between $\textbf {QwGrz}$ and $\textbf {QGL.3}$ or between $\textbf {QwGrz}$ and $\textbf {QGrz.3}$ is $\Pi ^1_1$-hard even in languages with three (sometimes, two) individual variables, two (sometimes, one) unary predicate letters, and a single (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Undecidability of the Logic of Partial Quasiary Predicates.Mikhail Rybakov & Dmitry Shkatov - 2022 - Logic Journal of the IGPL 30 (3):519-533.
    We obtain an effective embedding of the classical predicate logic into the logic of partial quasiary predicates. The embedding has the property that an image of a non-theorem of the classical logic is refutable in a model of the logic of partial quasiary predicates that has the same cardinality as the classical countermodel of the non-theorem. Therefore, we also obtain an embedding of the classical predicate logic of finite models into the logic of partial quasiary predicates over finite structures. As (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Liar-type Paradoxes and the Incompleteness Phenomena.Makoto Kikuchi & Taishi Kurahashi - 2016 - Journal of Philosophical Logic 45 (4):381-398.
    We define a liar-type paradox as a consistent proposition in propositional modal logic which is obtained by attaching boxes to several subformulas of an inconsistent proposition in classical propositional logic, and show several famous paradoxes are liar-type. Then we show that we can generate a liar-type paradox from any inconsistent proposition in classical propositional logic and that undecidable sentences in arithmetic can be obtained from the existence of a liar-type paradox. We extend these results to predicate logic and discuss Yablo’s (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fixed-point properties for predicate modal logics.Sohei Iwata & Taishi Kurahashi - 2020 - Annals of the Japan Association for Philosophy of Science 29:1-25.
    Download  
     
    Export citation  
     
    Bookmark