Switch to: References

Add citations

You must login to add citations.
  1. There is no classification of the decidably presentable structures.Matthew Harrison-Trainor - 2018 - Journal of Mathematical Logic 18 (2):1850010.
    A computable structure [Formula: see text] is decidable if, given a formula [Formula: see text] of elementary first-order logic, and a tuple [Formula: see text], we have a decision procedure to decide whether [Formula: see text] holds of [Formula: see text]. We show that there is no reasonable classification of the decidably presentable structures. Formally, we show that the index set of the computable structures with decidable presentations is [Formula: see text]-complete. We also show that for each [Formula: see text] (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Recursive and r.e. quotient Boolean algebras.John J. Thurber - 1994 - Archive for Mathematical Logic 33 (2):121-129.
    We prove a converse to one of the theorems from [F], giving a description in terms of Turing complexity of sets which can be coded into recursive and r.e. quotient Boolean algebras.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Indecomposable linear orderings and hyperarithmetic analysis.Antonio Montalbán - 2006 - Journal of Mathematical Logic 6 (1):89-120.
    A statement of hyperarithmetic analysis is a sentence of second order arithmetic S such that for every Y⊆ω, the minimum ω-model containing Y of RCA0 + S is HYP, the ω-model consisting of the sets hyperarithmetic in Y. We provide an example of a mathematical theorem which is a statement of hyperarithmetic analysis. This statement, that we call INDEC, is due to Jullien [13]. To the author's knowledge, no other already published, purely mathematical statement has been found with this property (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Complexity of $$\Sigma ^0_n$$-classifications for definable subsets.Svetlana Aleksandrova, Nikolay Bazhenov & Maxim Zubkov - 2022 - Archive for Mathematical Logic 62 (1):239-256.
    For a non-zero natural number n, we work with finitary $$\Sigma ^0_n$$ -formulas $$\psi (x)$$ without parameters. We consider computable structures $${\mathcal {S}}$$ such that the domain of $${\mathcal {S}}$$ has infinitely many $$\Sigma ^0_n$$ -definable subsets. Following Goncharov and Kogabaev, we say that an infinite list of $$\Sigma ^0_n$$ -formulas is a $$\Sigma ^0_n$$ -classification for $${\mathcal {S}}$$ if the list enumerates all $$\Sigma ^0_n$$ -definable subsets of $${\mathcal {S}}$$ without repetitions. We show that an arbitrary computable $${\mathcal {S}}$$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Enumerations in computable structure theory.Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy, Russell Miller & Reed Solomon - 2005 - Annals of Pure and Applied Logic 136 (3):219-246.
    We exploit properties of certain directed graphs, obtained from the families of sets with special effective enumeration properties, to generalize several results in computable model theory to higher levels of the hyperarithmetical hierarchy. Families of sets with such enumeration features were previously built by Selivanov, Goncharov, and Wehner. For a computable successor ordinal α, we transform a countable directed graph into a structure such that has a isomorphic copy if and only if has a computable isomorphic copy.A computable structure is (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On the complexity of the successivity relation in computable linear orderings.Rod Downey, Steffen Lempp & Guohua Wu - 2010 - Journal of Mathematical Logic 10 (1):83-99.
    In this paper, we solve a long-standing open question, about the spectrum of the successivity relation on a computable linear ordering. We show that if a computable linear ordering [Formula: see text] has infinitely many successivities, then the spectrum of the successivity relation is closed upwards in the computably enumerable Turing degrees. To do this, we use a new method of constructing [Formula: see text]-isomorphisms, which has already found other applications such as Downey, Kastermans and Lempp [9] and is of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Inseparability in recursive copies.Kevin J. Davey - 1994 - Annals of Pure and Applied Logic 68 (1):1-52.
    In [7] and [8], it is established that given any abstract countable structure S and a relation R on S, then as long as S has a recursive copy satisfying extra decidability conditions, R will be ∑0α on every recursive copy of S iff R is definable in S by a special type of infinitary formula, a ∑rα() formula. We generalize the typ e of constructions of these papers to produce conditions under which, given two disjoint relations R1 and R2 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intrinsic bounds on complexity and definability at limit levels.John Chisholm, Ekaterina B. Fokina, Sergey S. Goncharov, Valentina S. Harizanov, Julia F. Knight & Sara Quinn - 2009 - Journal of Symbolic Logic 74 (3):1047-1060.
    We show that for every computable limit ordinal α, there is a computable structure A that is $\Delta _\alpha ^0 $ categorical, but not relatively $\Delta _\alpha ^0 $ categorical (equivalently. it does not have a formally $\Sigma _\alpha ^0 $ Scott family). We also show that for every computable limit ordinal a, there is a computable structure A with an additional relation R that is intrinsically $\Sigma _\alpha ^0 $ on A. but not relatively intrinsically $\Sigma _\alpha ^0 $ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations