Switch to: References

Add citations

You must login to add citations.
  1. Realizing Levels of the Hyperarithmetic Hierarchy as Degree Spectra of Relations on Computable Structures.Walker M. White & Denis R. Hirschfeldt - 2002 - Notre Dame Journal of Formal Logic 43 (1):51-64.
    We construct a class of relations on computable structures whose degree spectra form natural classes of degrees. Given any computable ordinal and reducibility r stronger than or equal to m-reducibility, we show how to construct a structure with an intrinsically invariant relation whose degree spectrum consists of all nontrivial r-degrees. We extend this construction to show that can be replaced by either or.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The jump operation for structure degrees.V. Baleva - 2005 - Archive for Mathematical Logic 45 (3):249-265.
    One of the main problems in effective model theory is to find an appropriate information complexity measure of the algebraic structures in the sense of computability. Unlike the commonly used degrees of structures, the structure degree measure is total. We introduce and study the jump operation for structure degrees. We prove that it has all natural jump properties (including jump inversion theorem, theorem of Ash), which show that our definition is relevant. We study the relation between the structure degree jump (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A jump inversion theorem for the enumeration jump.I. N. Soskov - 2000 - Archive for Mathematical Logic 39 (6):417-437.
    . We prove a jump inversion theorem for the enumeration jump and a minimal pair type theorem for the enumeration reducibilty. As an application some results of Selman, Case and Ash are obtained.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Regular enumerations.I. N. Soskov & V. Baleva - 2002 - Journal of Symbolic Logic 67 (4):1323-1343.
    In the paper we introduce and study regular enumerations for arbitrary recursive ordinals. Several applications of the technique are presented.
    Download  
     
    Export citation  
     
    Bookmark   1 citation