Switch to: References

Add citations

You must login to add citations.
  1. Rice and Rice-Shapiro Theorems for transfinite correction grammars.John Case & Sanjay Jain - 2011 - Mathematical Logic Quarterly 57 (5):504-516.
    Hay and, then, Johnson extended the classic Rice and Rice-Shapiro Theorems for computably enumerable sets, to analogs for all the higher levels in the finite Ershov Hierarchy. The present paper extends their work to analogs in the transfinite Ershov Hierarchy. Some of the transfinite cases are done for all transfinite notations in Kleene's important system of notations, equation image. Other cases are done for all transfinite notations in a very natural, proper subsystem equation image of equation image, where equation image (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Learning correction grammars.Lorenzo Carlucci, John Case & Sanjay Jain - 2009 - Journal of Symbolic Logic 74 (2):489-516.
    We investigate a new paradigm in the context of learning in the limit, namely, learning correction grammars for classes of computably enumerable (c.e.) languages. Knowing a language may feature a representation of it in terms of two grammars. The second grammar is used to make corrections to the first grammar. Such a pair of grammars can be seen as a single description of (or grammar for) the language. We call such grammars correction grammars. Correction grammars capture the observable fact that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • 1995 European Summer Meeting of the Association for Symbolic Logic.Johann A. Makowsky - 1997 - Bulletin of Symbolic Logic 3 (1):73-147.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Hausdorff-Ershov Hierarchy in Euclidean Spaces.Armin Hemmerling - 2006 - Archive for Mathematical Logic 45 (3):323-350.
    The topological arithmetical hierarchy is the effective version of the Borel hierarchy. Its class Δta 2 is just large enough to include several types of pointsets in Euclidean spaces ℝ k which are fundamental in computable analysis. As a crossbreed of Hausdorff's difference hierarchy in the Borel class ΔB 2 and Ershov's hierarchy in the class Δ0 2 of the arithmetical hierarchy, the Hausdorff-Ershov hierarchy introduced in this paper gives a powerful classification within Δta 2. This is based on suitable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Characterizations of the class Δ ta 2 over Euclidean spaces.Armin Hemmerling - 2004 - Mathematical Logic Quarterly 50 (4):507-519.
    We present some characterizations of the members of Δta2, that class of the topological arithmetical hierarchy which is just large enough to include several fundamental types of sets of points in Euclidean spaces ℝk. The limit characterization serves as a basic tool in further investigations. The characterization by effective difference chains of effectively exhaustible sets yields only a hierarchy within a subfield of Δta2. Effective difference chains of transfinite (but constructive) order types, consisting of complements of effectively exhaustible sets, as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Turing degrees of certain isomorphic images of computable relations.Valentina S. Harizanov - 1998 - Annals of Pure and Applied Logic 93 (1-3):103-113.
    A model is computable if its domain is a computable set and its relations and functions are uniformly computable. Let be a computable model and let R be an extra relation on the domain of . That is, R is not named in the language of . We define to be the set of Turing degrees of the images f under all isomorphisms f from to computable models. We investigate conditions on and R which are sufficient and necessary for to (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations