Switch to: References

Add citations

You must login to add citations.
  1. Physical basis for the emergence of autopoiesis, cognition and knowledge.W. P. Hall - 2011 - Kororoit Institute Working Papers (2):1-63.
    Paper type: Conceptual perspective. Background(s): Physics, biology, epistemology Perspectives: Theory of autopoietic systems, Popperian evolutionary epistemology and the biology of cognition. Context: This paper is a contribution to developing the theories of hierarchically complex living systems and the natures of knowledge in such systems. Problem: Dissonance between the literatures of knowledge management and organization theory and my observations of the living organization led to consideration of foundation questions: What does it mean to be alive? What is knowledge? How are life (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can quantum probability provide a new direction for cognitive modeling?Emmanuel M. Pothos & Jerome R. Busemeyer - 2013 - Behavioral and Brain Sciences 36 (3):255-274.
    Classical (Bayesian) probability (CP) theory has led to an influential research tradition for modeling cognitive processes. Cognitive scientists have been trained to work with CP principles for so long that it is hard even to imagine alternative ways to formalize probabilities. However, in physics, quantum probability (QP) theory has been the dominant probabilistic approach for nearly 100 years. Could QP theory provide us with any advantages in cognitive modeling as well? Note first that both CP and QP theory share the (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Quantum cognition and bounded rationality.Reinhard Blutner & Peter Beim Graben - 2016 - Synthese 193 (10).
    We consider several puzzles of bounded rationality. These include the Allais- and Ellsberg paradox, the disjunction effect, and related puzzles. We argue that the present account of quantum cognition—taking quantum probabilities rather than classical probabilities—can give a more systematic description of these puzzles than the alternate treatments in the traditional frameworks of bounded rationality. Unfortunately, the quantum probabilistic treatment does not always provide a deeper understanding and a true explanation of these puzzles. One reason is that quantum approaches introduce additional (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Concept of Complementarity and its Role in Quantum Entanglement and Generalized Entanglement.Thilo Hinterberger & Nikolaus von Stillfried - 2013 - Global Philosophy 23 (3):443-459.
    The term complementarity plays a central role in quantum physics, not least in various approaches to defining entanglement and the conditions for its occurrence. It has, however, been used in a variety of ways by different authors, denoting different concepts and relationships. Here we describe and clarify some of them and analyze the role they play with respect to the phenomenon of entanglement. Based on these considerations we discuss the recently proposed system-theoretical generalization of the concepts entanglement and complementarity (Atmanspacher (...)
    Download  
     
    Export citation  
     
    Bookmark