Switch to: References

Citations of:

Quasi-canonical systems and their semantics

Synthese 198 (S22):5353-5371 (2018)

Add citations

You must login to add citations.
  1. Proof Systems for 3-valued Logics Based on Gödel’s Implication.Arnon Avron - 2022 - Logic Journal of the IGPL 30 (3):437-453.
    The logic $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ was introduced in Robles and Mendéz as a paraconsistent logic which is based on Gödel’s 3-valued matrix, except that Kleene–Łukasiewicz’s negation is added to the language and is used as the main negation connective. We show that $G3^{<}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ is exactly the intersection of $G3^{\{1\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$ and $G3^{\{1,0.5\}}_{{{}^{\scriptsize{-}}}\!\!\textrm{L}}$, the two truth-preserving 3-valued logics which are based on the same truth tables. We then construct a Hilbert-type system which has for $\to $ as its sole rule of inference, and is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Normal and Self-extensional Extension of Dunn–Belnap Logic.Arnon Avron - 2020 - Logica Universalis 14 (3):281-296.
    A logic \ is called self-extensional if it allows to replace occurrences of a formula by occurrences of an \-equivalent one in the context of claims about logical consequence and logical validity. It is known that no three-valued paraconsistent logic which has an implication can be self-extensional. In this paper we show that in contrast, the famous Dunn–Belnap four-valued logic has exactly one self-extensional four-valued extension which has an implication. We also investigate the main properties of this logic, determine the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations