Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Models of non-well-founded sets via an indexed final coalgebra theorem.Benno van Den Berg & Federico de Marchi - 2007 - Journal of Symbolic Logic 72 (3):767-791.
    The paper uses the formalism of indexed categories to recover the proof of a standard final coalgebra theorem, thus showing existence of final coalgebras for a special class of functors on finitely complete and cocomplete categories. As an instance of this result, we build the final coalgebra for the powerclass functor, in the context of a Heyting pretopos with a class of small maps. This is then proved to provide models for various non-well-founded set theories, depending on the chosen axiomatisation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Generalised Type-Theoretic Interpretation of Constructive Set Theory.Nicola Gambino & Peter Aczel - 2006 - Journal of Symbolic Logic 71 (1):67 - 103.
    We present a generalisation of the type-theoretic interpretation of constructive set theory into Martin-Löf type theory. The original interpretation treated logic in Martin-Löf type theory via the propositions-as-types interpretation. The generalisation involves replacing Martin-Löf type theory with a new type theory in which logic is treated as primitive. The primitive treatment of logic in type theories allows us to study reinterpretations of logic, such as the double-negation translation.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A brief introduction to algebraic set theory.Steve Awodey - 2008 - Bulletin of Symbolic Logic 14 (3):281-298.
    This brief article is intended to introduce the reader to the field of algebraic set theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, applying to various classical, intuitionistic, and constructive set theories. Under this scheme some familiar set theoretic properties are related to algebraic ones, while others result from logical constraints. Conventional elementary set theories are complete with respect to algebraic models, which arise in a variety of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Coalgebras in a category of classes.Michael A. Warren - 2007 - Annals of Pure and Applied Logic 146 (1):60-71.
    In this paper the familiar construction of the category of coalgebras for a cartesian comonad is extended to the setting of “algebraic set theory”. In particular, it is shown that, under suitable assumptions, several kinds of categories of classes are stable under the formation of coalgebras for a cartesian comonad, internal presheaves and comma categories.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Relational dual tableau decision procedures and their applications to modal and intuitionistic logics.Joanna Golińska-Pilarek & Taneli Huuskonen - 2014 - Annals of Pure and Applied Logic 165 (2):428-502.
    This paper introduces Basic Intuitionistic Set Theory BIST, and investigates it as a first-order set theory extending the internal logic of elementary toposes. Given an elementary topos, together with the extra structure of a directed structural system of inclusions on the topos, a forcing-style interpretation of the language of first-order set theory in the topos is given, which conservatively extends the internal logic of the topos. This forcing interpretation applies to an arbitrary elementary topos, since any such is equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Aspects of predicative algebraic set theory I: Exact Completion.Benno van den Berg & Ieke Moerdijk - 2008 - Annals of Pure and Applied Logic 156 (1):123-159.
    This is the first in a series of papers on Predicative Algebraic Set Theory, where we lay the necessary groundwork for the subsequent parts, one on realizability [B. van den Berg, I. Moerdijk, Aspects of predicative algebraic set theory II: Realizability, Theoret. Comput. Sci. . Available from: arXiv:0801.2305, 2008], and the other on sheaves [B. van den Berg, I. Moerdijk, Aspects of predicative algebraic set theory III: Sheaf models, 2008 ]. We introduce the notion of a predicative category with small (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • From sets to types to categories to sets.Steve Awodey - 2009 - Philosophical Explorations.
    Three different styles of foundations of mathematics are now commonplace: set theory, type theory, and category theory. How do they relate, and how do they differ? What advantages and disadvantages does each one have over the others? We pursue these questions by considering interpretations of each system into the others and examining the preservation and loss of mathematical content thereby. In order to stay focused on the “big picture”, we merely sketch the overall form of each construction, referring to the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructivist and structuralist foundations: Bishop’s and Lawvere’s theories of sets.Erik Palmgren - 2012 - Annals of Pure and Applied Logic 163 (10):1384-1399.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Constructive toposes with countable sums as models of constructive set theory.Alex Simpson & Thomas Streicher - 2012 - Annals of Pure and Applied Logic 163 (10):1419-1436.
    Download  
     
    Export citation  
     
    Bookmark  
  • Comparing material and structural set theories.Michael Shulman - 2019 - Annals of Pure and Applied Logic 170 (4):465-504.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Relating first-order set theories, toposes and categories of classes.Steve Awodey, Carsten Butz, Alex Simpson & Thomas Streicher - 2014 - Annals of Pure and Applied Logic 165 (2):428-502.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The associated sheaf functor theorem in algebraic set theory.Nicola Gambino - 2008 - Annals of Pure and Applied Logic 156 (1):68-77.
    We prove a version of the associated sheaf functor theorem in Algebraic Set Theory. The proof is established working within a Heyting pretopos equipped with a system of small maps satisfying the axioms originally introduced by Joyal and Moerdijk. This result improves on the existing developments by avoiding the assumption of additional axioms for small maps and the use of collection sites.
    Download  
     
    Export citation  
     
    Bookmark   3 citations