Switch to: References

Add citations

You must login to add citations.
  1. The Development of Categorical Logic.John L. Bell - unknown
    5.5. Every topos is linguistic: the equivalence theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Completeness and Categoricity, Part II: Twentieth-Century Metalogic to Twenty-first-Century Semantics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (2):77-94.
    This paper is the second in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • What is categorical structuralism?Geoffrey Hellman - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 151--161.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Topological Completeness of First-Order Modal Logics.Steve Awodey & Kohei Kishida - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 1-17.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Syntax and Semantics of the Logic $\mathcal{L}^\lambda_{\omega\omega}$.Carsten Butz - 1997 - Notre Dame Journal of Formal Logic 38 (3):374-384.
    In this paper we study the logic $\mathcal{L}^\lambda_{\omega\omega}$, which is first-order logic extended by quantification over functions . We give the syntax of the logic as well as the semantics in Heyting categories with exponentials. Embedding the generic model of a theory into a Grothendieck topos yields completeness of $\mathcal{L}^\lambda_{\omega\omega}$ with respect to models in Grothendieck toposes, which can be sharpened to completeness with respect to Heyting-valued models. The logic $\mathcal{L}^\lambda_{\omega\omega}$ is the strongest for which Heyting-valued completeness is known. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A topological completeness theorem.Carsten Butz - 1999 - Archive for Mathematical Logic 38 (2):79-101.
    We prove a topological completeness theorem for infinitary geometric theories with respect to sheaf models. The theorem extends a classical result of Makkai and Reyes, stating that any topos with enough points has an open spatial cover. We show that one can achieve in addition that the cover is connected and locally connected.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today.Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.) - 2006 - Dordrecht, Netherland: Springer.
    This book explores the interplay between logic and science, describing new trends, new issues and potential research developments.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Syntax and Semantics of the Logic.Carsten Butz - 1997 - Notre Dame Journal of Formal Logic 38 (3):374-384.
    In this paper we study the logic , which is first-order logic extended by quantification over functions (but not over relations). We give the syntax of the logic as well as the semantics in Heyting categories with exponentials. Embedding the generic model of a theory into a Grothendieck topos yields completeness of with respect to models in Grothendieck toposes, which can be sharpened to completeness with respect to Heyting-valued models. The logic is the strongest for which Heyting-valued completeness is known. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Continuity and logical completeness: an application of sheaf theory and topoi.Steve Awodey - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 139--149.
    The notion of a continuously variable quantity can be regarded as a generalization of that of a particular quantity, and the properties of such quantities are then akin to, and derived from, the properties of constants. For example, the continuous, real-valued functions on a topological space behave like the field of real numbers in many ways, but instead form a ring. Topos theory permits one to apply this same idea to logic, and to consider continuously variable sets . In this (...)
    Download  
     
    Export citation  
     
    Bookmark