Switch to: References

Add citations

You must login to add citations.
  1. Logics with the universal modality and admissible consecutions.Rybakov Vladimir - 2007 - Journal of Applied Non-Classical Logics 17 (3):383-396.
    In this paper1 we study admissible consecutions in multi-modal logics with the universal modality. We consider extensions of multi-modal logic S4n augmented with the universal modality. Admissible consecutions form the largest class of rules, under which a logic is closed. We propose an approach based on the context effective finite model property. Theorem 7, the main result of the paper, gives sufficient conditions for decidability of admissible consecutions in our logics. This theorem also provides an explicit algorithm for recognizing such (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Non-primitive recursive decidability of products of modal logics with expanding domains.David Gabelaia, Agi Kurucz, Frank Wolter & Michael Zakharyaschev - 2006 - Annals of Pure and Applied Logic 142 (1):245-268.
    We show that—unlike products of ‘transitive’ modal logics which are usually undecidable—their ‘expanding domain’ relativisations can be decidable, though not in primitive recursive time. In particular, we prove the decidability and the finite expanding product model property of bimodal logics interpreted in two-dimensional structures where one component—call it the ‘flow of time’—is • a finite linear order or a finite transitive tree and the other is composed of structures like • transitive trees/partial orders/quasi-orders/linear orders or only finite such structures expanding (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Products of 'transitive' modal logics.David Gabelaia, Agi Kurucz, Frank Wolter & Michael Zakharyaschev - 2005 - Journal of Symbolic Logic 70 (3):993-1021.
    We solve a major open problem concerning algorithmic properties of products of ‘transitive’ modal logics by showing that products and commutators of such standard logics as K4, S4, S4.1, K4.3, GL, or Grz are undecidable and do not have the finite model property. More generally, we prove that no Kripke complete extension of the commutator [K4,K4] with product frames of arbitrary finite or infinite depth (with respect to both accessibility relations) can be decidable. In particular, if.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Products of ‘transitive” modal logics.David Gabelaia, Agi Kurucz, Frank Wolter & Michael Zakharyaschev - 2005 - Journal of Symbolic Logic 70 (3):993-1021.
    We solve a major open problem concerning algorithmic properties of products of ‘transitive’ modal logics by showing that products and commutators of such standard logics asK4,S4,S4.1,K4.3,GL, orGrzare undecidable and do not have the finite model property. More generally, we prove that no Kripke complete extension of the commutator [K4, K4] with product frames of arbitrary finite or infinite depth (with respect to both accessibility relations) can be decidable. In particular, ifl1andl2are classes of transitive frames such that their depth cannot be (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (2 other versions)Decidable fragments of first-order modal logics.Frank Wolter & Michael Zakharyaschev - 2001 - Journal of Symbolic Logic 66 (3):1415-1438.
    The paper considers the set ML 1 of first-order polymodal formulas the modal operators in which can be applied to subformulas of at most one free variable. Using a mosaic technique, we prove a general satisfiability criterion for formulas in ML 1 , which reduces the modal satisfiability to the classical one. The criterion is then used to single out a number of new, in a sense optimal, decidable fragments of various modal predicate logics.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)On axiomatising products of Kripke frames.Agnes Kurucz - 2000 - Journal of Symbolic Logic 65 (2):923-945.
    It is shown that the many-dimensional modal logic K n , determined by products of n-many Kripke frames, is not finitely axiomatisable in the n-modal language, for any $n > 2$ . On the other hand, K n is determined by a class of frames satisfying a single first-order sentence.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (2 other versions)Decidable fragments of first-order temporal logics.Ian Hodkinson, Frank Wolter & Michael Zakharyaschev - 2000 - Annals of Pure and Applied Logic 106 (1-3):85-134.
    In this paper, we introduce a new fragment of the first-order temporal language, called the monodic fragment, in which all formulas beginning with a temporal operator have at most one free variable. We show that the satisfiability problem for monodic formulas in various linear time structures can be reduced to the satisfiability problem for a certain fragment of classical first-order logic. This reduction is then used to single out a number of decidable fragments of first-order temporal logics and of two-sorted (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • -Connections of abstract description systems.Oliver Kutz, Carsten Lutz, Frank Wolter & Michael Zakharyaschev - 2004 - Artificial Intelligence 156 (1):1-73.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Non-finitely axiomatisable two-dimensional modal logics.Agi Kurucz & Sérgio Marcelino - 2012 - Journal of Symbolic Logic 77 (3):970-986.
    We show the first examples of recursively enumerable (even decidable) two-dimensional products of finitely axiomatisable modal logics that are not finitely axiomatisable. In particular, we show that any axiomatisation of some bimodal logics that are determined by classes of product frames with linearly ordered first components must be infinite in two senses: It should contain infinitely many propositional variables, and formulas of arbitrarily large modal nesting-depth.
    Download  
     
    Export citation  
     
    Bookmark   4 citations