Switch to: References

Add citations

You must login to add citations.
  1. Extremal numberings and fixed point theorems.Marat Faizrahmanov - 2022 - Mathematical Logic Quarterly 68 (4):398-408.
    We consider so‐called extremal numberings that form the greatest or minimal degrees under the reducibility of all A‐computable numberings of a given family of subsets of, where A is an arbitrary oracle. Such numberings are very common in the literature and they are called universal and minimal A‐computable numberings, respectively. The main question of this paper is when a universal or a minimal A‐computable numbering satisfies the Recursion Theorem (with parameters). First we prove that the Turing degree of a set (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reductions between types of numberings.Ian Herbert, Sanjay Jain, Steffen Lempp, Manat Mustafa & Frank Stephan - 2019 - Annals of Pure and Applied Logic 170 (12):102716.
    This paper considers reductions between types of numberings; these reductions preserve the Rogers Semilattice of the numberings reduced and also preserve the number of minimal and positive degrees in their semilattice. It is shown how to use these reductions to simplify some constructions of specific semilattices. Furthermore, it is shown that for the basic types of numberings, one can reduce the left-r.e. numberings to the r.e. numberings and the k-r.e. numberings to the k+1-r.e. numberings; all further reductions are obtained by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rogers semilattices of limitwise monotonic numberings.Nikolay Bazhenov, Manat Mustafa & Zhansaya Tleuliyeva - 2022 - Mathematical Logic Quarterly 68 (2):213-226.
    Limitwise monotonic sets and functions constitute an important tool in computable structure theory. We investigate limitwise monotonic numberings. A numbering ν of a family is limitwise monotonic (l.m.) if every set is the range of a limitwise monotonic function, uniformly in k. The set of all l.m. numberings of S induces the Rogers semilattice. The semilattices exhibit a peculiar behavior, which puts them in‐between the classical Rogers semilattices (for computable families) and Rogers semilattices of ‐computable families. We show that every (...)
    Download  
     
    Export citation  
     
    Bookmark