Switch to: References

Add citations

You must login to add citations.
  1. Atoms and bonds in molecules and chemical explanations.Mauro Causá, Andreas Savin & Bernard Silvi - 2013 - Foundations of Chemistry 16 (1):3-26.
    The concepts of atoms and bonds in molecules which appeared in chemistry during the nineteenth century are unavoidable to explain the structure and the reactivity of the matter at a chemical level of understanding. Although they can be criticized from a strict reductionist point of view, because neither atoms nor bonds are observable in the sense of quantum mechanics, the topological and statistical interpretative approaches of quantum chemistry (quantum theory of atoms in molecules, electron localization function and maximum probability domain) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards a Philosophy of Chemical Reactivity Through the Molecule in Atoms-of Concept.Saturnino Calvo-Losada & José Joaquín Quirante - 2022 - Axiomathes 32 (1):1-41.
    A novel non-classical mereological concept built up by blending the Metaphysics of Xavier Zubiri and the Quantum Theory of Atoms in Molecules of R. F. W. Bader is proposed. It is argued that this philosophical concept is necessary to properly account for what happens in a chemical reaction. From the topology of the gradient of the laplacian of the electronic charge density, \\) within the QTAIM framework, different “atomic graphs” are found for each atom depending on the molecular context, reflecting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the nature of quantum-chemical entities: the case of electron density.Jesus Alberto Jaimes Arriaga - 2022 - Foundations of Chemistry 25 (1):127-139.
    An Aristotelian philosophy of nature offers an alternative to reduction for the conception of the inter-theoretical relationships between molecular chemistry and quantum mechanics. A basic ingredient for such an approach is an ontology of fundamental causal powers, and this work aims to develop such an ontology by drawing on quantum-chemical entities, particularly, the electron density. This notion is central to the Quantum Theory of Atoms in Molecules, a theory of molecular structure developed by Richard F. W. Bader, which describes molecules (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations.Charles T. Sebens - 2021 - Foundations of Physics 51 (4):1-39.
    Within quantum chemistry, the electron clouds that surround nuclei in atoms and molecules are sometimes treated as clouds of probability and sometimes as clouds of charge. These two roles, tracing back to Schrödinger and Born, are in tension with one another but are not incompatible. Schrödinger’s idea that the nucleus of an atom is surrounded by a spread-out electron charge density is supported by a variety of evidence from quantum chemistry, including two methods that are used to determine atomic and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A commentary on Weisberg’s critique of the ‘structural conception’ of chemical bonding.Eric R. Scerri - 2022 - Foundations of Chemistry 25 (2):253-264.
    Robin Hendry has presented an account of two equally valid ways of understanding the nature of chemical bonding, consisting of what the terms the structural and the energetic views respectively. In response, Weisberg has issued a “challenge to the structural view”, thus implying that the energetic view is the more correct of the two conceptions. In doing so Weisberg identifies the delocalization of electrons as the one robust feature that underlies the increasingly accurate quantum mechanical calculations starting with the Heitler-London (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Two-step emergence: the quantum theory of atoms in molecules as a bridge between quantum mechanics and molecular chemistry.Chérif F. Matta, Olimpia Lombardi & Jesús Jaimes Arriaga - 2020 - Foundations of Chemistry 22 (1):107-129.
    By moving away from the traditional reductionist reading of the quantum theory of atoms in molecules, in this paper we analyze the role played by QTAIM in the relationship between molecular chemistry and quantum mechanics from an emergentist perspective. In particular, we show that such a relationship involves two steps: an intra-domain emergence and an inter-domain emergence. Intra-domain emergence, internal to quantum mechanics, results from the fact that the electron density, from which all the other QTAIM’s concepts are defined, arises (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • About the Concept of Molecular Structure.Olimpia Lombardi & Giovanni Villani - forthcoming - Foundations of Science.
    The concept of molecular structure is one of the most important concepts of chemistry. In fact, molecular structure is closely related to the concept of chemical substance and its set of properties, and it is the main factor in the explanation of reactivity. In fact, much of the behavior of substances is explained in terms of the structure of their component molecules. This may explain why people tend to take the notion of molecular structure for granted. However, the problem begins (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How properties hold together in Substances.Joseph E. Earley - 2016 - In Eric R. Scerri & Grant Andrew Fisher (eds.), Essays in Philosophy of Chemistry. Oxford University Press. pp. 199-216.
    This article aims to clarify how aspects of current chemical understanding relate to some important contemporary problems of philosophy. The first section points out that the long-running philosophical debates concerning how properties stay together in substances have neglected the important topic of structure-determining closure. The second part describes several chemically-important types of closure and the third part shows how such closures ground the properties of chemical substances. The fourth section introduces current discussions of structural realism (SR) and contextual emergence: the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Austere quantum mechanics as a reductive basis for chemistry.Hinne Hettema - 2012 - Foundations of Chemistry 15 (3):311-326.
    This paper analyses Richard Bader’s ‘operational’ view of quantum mechanics and the role it plays in the the explanation of chemistry. I argue that QTAIM can partially be reconstructed as an ‘austere’ form of quantum mechanics, which is in turn committed to an eliminative concept of reduction that stems from Kemeny and Oppenheim. As a reductive theory in this sense, the theory fails. I conclude that QTAIM has both a regulatory and constructive function in the theories of chemistry.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What is the electron density?Sebastian Fortin & Olimpia Lombardi - 2024 - Foundations of Chemistry 26 (3):371-383.
    Although the electron density can be calculated with the formal resources of quantum mechanics, in physics it does not play the leading role that the quantum state does. In contrast, the concept of electron density is central in quantum chemistry. There is no doubt about how the electron density is computed in terms of the wave function of an atom or molecule. However, when the interpretation of the concept is at stake, there is no general agreement. In this article we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Ontological Status of Molecular Structure: Is it Possible to Reconcile Molecular Chemistry with Quantum Mechanics?Sebastian Fortin, Martín Labarca & Olimpia Lombardi - 2022 - Foundations of Science 28 (2):709-725.
    According to classical molecular chemistry, molecules have a structure, that is, they are sets of atoms with a definite arrangements in space and held together by chemical bonds. The concept of molecular structure is central to modern chemical thought given its impressive predictive power. It is also a very useful concept in chemistry education, due to its role in the rationalization and visualization of microscopic phenomena. However, such a concept seems to find no place in the ontology described by quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Philosophical Analysis of the Relation between Chemistry and Quantum Mechanics.Vanessa Seifert - 2019 - Dissertation, University of Bristol
    This thesis investigates the epistemological and metaphysical relations between chemistry and quantum mechanics. These relations are examined with respect to how chemistry and quantum mechanics each describe a single inert molecule. A review of how these relations are understood in the literature shows that there is a proliferation of positions which focus on how chemistry is separate from quantum mechanics. This proliferation is accompanied by a tendency within the philosophy of chemistry community to connect the legitimacy of the field with (...)
    Download  
     
    Export citation  
     
    Bookmark