Switch to: References

Add citations

You must login to add citations.
  1. Bridging Conceptual Gaps: The Kolmogorov-Sinai Entropy.Massimiliano Badino - forthcoming - Isonomía. Revista de Teoría y Filosofía Del Derecho.
    The Kolmogorov-Sinai entropy is a fairly exotic mathematical concept which has recently aroused some interest on the philosophers’ part. The most salient trait of this concept is its working as a junction between such diverse ambits as statistical mechanics, information theory and algorithm theory. In this paper I argue that, in order to understand this very special feature of the Kolmogorov-Sinai entropy, is essential to reconstruct its genealogy. Somewhat surprisingly, this story takes us as far back as the beginning of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • When do Gibbsian phase averages and Boltzmannian equilibrium values agree?Charlotte Werndl & Roman Frigg - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:46-69.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The ergodic hierarchy.Roman Frigg & Joseph Berkovitz - 2011 - Stanford Encyclopedia of Philosophy.
    The so-called ergodic hierarchy (EH) is a central part of ergodic theory. It is a hierarchy of properties that dynamical systems can possess. Its five levels are egrodicity, weak mixing, strong mixing, Kolomogorov, and Bernoulli. Although EH is a mathematical theory, its concepts have been widely used in the foundations of statistical physics, accounts of randomness, and discussions about the nature of chaos. We introduce EH and discuss how its applications in these fields.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Philosophy of statistical mechanics.Lawrence Sklar - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   10 citations