Switch to: References

Add citations

You must login to add citations.
  1. Rank-initial embeddings of non-standard models of set theory.Paul Kindvall Gorbow - 2020 - Archive for Mathematical Logic 59 (5-6):517-563.
    A theoretical development is carried to establish fundamental results about rank-initial embeddings and automorphisms of countable non-standard models of set theory, with a keen eye for their sets of fixed points. These results are then combined into a “geometric technique” used to prove several results about countable non-standard models of set theory. In particular, back-and-forth constructions are carried out to establish various generalizations and refinements of Friedman’s theorem on the existence of rank-initial embeddings between countable non-standard models of the fragment (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Self-Embeddings of Models of Arithmetic; Fixed Points, Small Submodels, and Extendability.Saeideh Bahrami - 2024 - Journal of Symbolic Logic 89 (3):1044-1066.
    In this paper we will show that for every cut I of any countable nonstandard model $\mathcal {M}$ of $\mathrm {I}\Sigma _{1}$, each I-small $\Sigma _{1}$ -elementary submodel of $\mathcal {M}$ is of the form of the set of fixed points of some proper initial self-embedding of $\mathcal {M}$ iff I is a strong cut of $\mathcal {M}$. Especially, this feature will provide us with some equivalent conditions with the strongness of the standard cut in a given countable model $\mathcal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Tanaka’s theorem revisited.Saeideh Bahrami - 2020 - Archive for Mathematical Logic 59 (7-8):865-877.
    Tanaka proved a powerful generalization of Friedman’s self-embedding theorem that states that given a countable nonstandard model \\) of the subsystem \ of second order arithmetic, and any element m of \, there is a self-embedding j of \\) onto a proper initial segment of itself such that j fixes every predecessor of m. Here we extend Tanaka’s work by establishing the following results for a countable nonstandard model \\ \)of \ and a proper cut \ of \:Theorem A. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Initial self-embeddings of models of set theory.Ali Enayat & Zachiri Mckenzie - 2021 - Journal of Symbolic Logic 86 (4):1584-1611.
    By a classical theorem of Harvey Friedman, every countable nonstandard model $\mathcal {M}$ of a sufficiently strong fragment of ZF has a proper rank-initial self-embedding j, i.e., j is a self-embedding of $\mathcal {M}$ such that $j[\mathcal {M}]\subsetneq \mathcal {M}$, and the ordinal rank of each member of $j[\mathcal {M}]$ is less than the ordinal rank of each element of $\mathcal {M}\setminus j[\mathcal {M}]$. Here, we investigate the larger family of proper initial-embeddings j of models $\mathcal {M}$ of fragments of (...)
    Download  
     
    Export citation  
     
    Bookmark