Switch to: References

Add citations

You must login to add citations.
  1. Spontaneous Symmetry Breaking in Finite Quantum Systems: a decoherent-histories approach.David Wallace - unknown
    Spontaneous symmetry breaking in quantum systems, such as ferromagnets, is normally described as degeneracy of the ground state; however, it is well established that this degeneracy only occurs in spatially infinite systems, and even better established that ferromagnets are not spatially infinite. I review this well-known paradox, and consider a popular solution where the symmetry is explicitly broken by some external field which goes to zero in the infinite-volume limit; although this is formally satisfactory, I argue that it must be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On broken symmetries and classical systems.Benjamin Feintzeig - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):267-273.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Unitary inequivalence in classical systems.Benjamin Feintzeig - 2016 - Synthese 193 (9).
    Ruetsche argues that a problem of unitarily inequivalent representations arises in quantum theories with infinitely many degrees of freedom. I provide an algebraic formulation of classical field theories and show that unitarily inequivalent representations arise there as well. I argue that the classical case helps us rule out one possible response to the problem of unitarily inequivalent representations called Hilbert Space Conservatism.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Quantum symmetry breaking and physical inequivalence: the case of ferromagnetism.Giovanni Valente - 2020 - Synthese 198 (9):8127-8148.
    This paper discusses an outstanding issue in philosophy of physics concerning the relation between quantum symmetries and the notion of physical equivalence. Specifically, it deals with a dilemma arising for quantum symmetry breaking that was posed by Baker, who claimed that if two ground states are connected by a symmetry, even when it is broken, they must be physically equivalent. However, I argue that the dilemma is just apparent. In fact, I object to Baker’s conclusion by showing that the two (...)
    Download  
     
    Export citation  
     
    Bookmark