Switch to: References

Add citations

You must login to add citations.
  1. Two dogmas of dynamicism.James Owen Weatherall - 2020 - Synthese 199 (S2):253-275.
    I critically discuss two dogmas of the “dynamical approach” to spacetime in general relativity, as advanced by Harvey Brown [Physical Relativity Oxford:Oxford University Press] and collaborators. The first dogma is that positing a “spacetime geometry” has no implications for the behavior of matter. The second dogma is that postulating the “Strong Equivalence Principle” suffices to ensure that matter is “adapted” to spacetime geometry. I conclude by discussing “spacetime functionalism”. The discussion is presented in reaction to and sympathy with recent work (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • General-Relativistic Covariance.Neil Dewar - 2020 - Foundations of Physics 50 (4):294-318.
    This is an essay about general covariance, and what it says about spacetime structure. After outlining a version of the dynamical approach to spacetime theories, and how it struggles to deal with generally covariant theories, I argue that we should think about the symmetry structure of spacetime rather differently in generally-covariant theories compared to non-generally-covariant theories: namely, as a form of internal rather than external symmetry structure.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Interpreting Supersymmetry.David John Baker - 2020 - Erkenntnis 87 (5):2375-2396.
    Supersymmetry in quantum physics is a mathematically simple phenomenon that raises deep foundational questions. To motivate these questions, I present a toy model, the supersymmetric harmonic oscillator, and its superspace representation, which adds extra anticommuting dimensions to spacetime. I then explain and comment on three foundational questions about this superspace formalism: whether superspace is a substance, whether it should count as spatiotemporal, and whether it is a necessary postulate if one wants to use the theory to unify bosons and fermions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the empirical coherence and the spatiotemporal gap problem in quantum gravity: and why functionalism does not (have to) help.Niels Linnemann - 2020 - Synthese 199 (S2):395-412.
    The empirical coherence problem of quantum gravity is the worry that a theory which does not fundamentally contain local beables located in space and time—such as is arguably the case for certain approaches to quantum gravity—cannot be connected to measurements and thus has its prospects of being empirically adequate undermined. Spacetime functionalism à la Lam and Wüthrich is said to solve this empirical coherence problem as well as bridging a severe conceptual gap between spatiotemporal structures of classical spacetime theories on (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The metaphysics of emergent spacetime theories.Niels C. M. Martens - 2019 - Philosophy Compass 14 (7):e12596.
    The debate concerning the ontological status of spacetime is standardly construed as a dilemma between substantivalism and relationalism. I argue that a trilemma is more appropriate, emergent spacetime theories being the third category. Traditional philosophical arguments do not distinguish between emergent spacetime and substantivalism. It is arguments from physics that suggest giving up substantivalism in favour of emergent spacetime theories. The remaining new dilemma is between emergent spacetime and relationalism. I provide a list of questions, which one should consider when (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations