Switch to: References

Add citations

You must login to add citations.
  1. Mathematical surrealism as an alternative to easy-road fictionalism.Kenneth Boyce - 2020 - Philosophical Studies 177 (10):2815-2835.
    Easy-road mathematical fictionalists grant for the sake of argument that quantification over mathematical entities is indispensable to some of our best scientific theories and explanations. Even so they maintain we can accept those theories and explanations, without believing their mathematical components, provided we believe the concrete world is intrinsically as it needs to be for those components to be true. Those I refer to as “mathematical surrealists” by contrast appeal to facts about the intrinsic character of the concrete world, not (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical application and the no confirmation thesis.Kenneth Boyce - 2020 - Analysis 80 (1):11-20.
    Some proponents of the indispensability argument for mathematical realism maintain that the empirical evidence that confirms our best scientific theories and explanations also confirms their pure mathematical components. I show that the falsity of this view follows from three highly plausible theses, two of which concern the nature of mathematical application and the other the nature of empirical confirmation. The first is that the background mathematical theories suitable for use in science are conservative in the sense outlined by Hartry Field. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Enhanced Indispensability Argument, the circularity problem, and the interpretability strategy.Jan Heylen & Lars Arthur Tump - 2019 - Synthese 198 (4):3033-3045.
    Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely mathematical, according to Baker (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Why inference to the best explanation doesn’t secure empirical grounds for mathematical platonism.Kenneth Boyce - 2018 - Synthese 198 (1):1-13.
    Proponents of the explanatory indispensability argument for mathematical platonism maintain that claims about mathematical entities play an essential explanatory role in some of our best scientific explanations. They infer that the existence of mathematical entities is supported by way of inference to the best explanation from empirical phenomena and therefore that there are the same sort of empirical grounds for believing in mathematical entities as there are for believing in concrete unobservables such as quarks. I object that this inference depends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Two Criticisms against Mathematical Realism.Seungbae Park - 2017 - Diametros 52:96-106.
    Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Scientific explanation, unifying mathematics, and indispensability arguments.Patrick Dieveney - 2018 - Synthese 198 (1):57-77.
    Indispensability arguments occupy a prominent role in discussions of mathematical realism. While different versions of these arguments are discussed in the literature, their general structure remains the same. These arguments contend that insofar as reference to mathematical objects is indispensable to science, we are committed to the existence of these ‘objects’. Unsurprisingly, much of the debate concerning indispensability arguments focuses on the crucial contention that mathematical objects are indispensable to science. For these arguments to provide support for mathematical realism, what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can we have mathematical understanding of physical phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical Explanation and the Biological Optimality Fallacy.Samantha Wakil & James Justus - 2017 - Philosophy of Science 84 (5):916-930.
    Pure mathematics can play an indispensable role explaining empirical phenomena if recent accounts of insect evolution are correct. In particular, the prime life cycles of cicadas and the geometric structure of honeycombs are taken to undergird an inference to the best explanation about mathematical entities. Neither example supports this inference or the mathematical realism it is intended to establish. Both incorrectly assume that facts about mathematical optimality drove selection for the respective traits and explain why they exist. We show how (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The silent hexagon: explaining comb structures.Tim Räz - 2017 - Synthese 194 (5).
    The paper presents, and discusses, four candidate explanations of the structure, and construction, of the bees’ honeycomb. So far, philosophers have used one of these four explanations, based on the mathematical Honeycomb Conjecture, while the other three candidate explanations have been ignored. I use the four cases to resolve a dispute between Pincock and Baker about the Honeycomb Conjecture explanation. Finally, I find that the two explanations focusing on the construction mechanism are more promising than those focusing exclusively on the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The uncanny accuracy of God's mathematical beliefs.Robert Knowles - 2021 - Religious Studies 57 (2):333-352.
    I show how mathematical platonism combined with belief in the God of classical theism can respond to Field's epistemological objection. I defend an account of divine mathematical knowledge by showing that it falls out of an independently motivated general account of divine knowledge. I use this to explain the accuracy of God's mathematical beliefs, which in turn explains the accuracy of our own. My arguments provide good news for theistic platonists, while also shedding new light on Field's influential objection.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Two Weak Points of the Enhanced Indispensability Argument – Domain of the Argument and Definition of Indispensability.Vladimir Drekalović - 2016 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 23 (3):280-298.
    The contemporary Platonists in the philosophy of mathematics argue that mathematical objects exist. One of the arguments by which they support this standpoint is the so-called Enhanced Indispensability Argument (EIA). This paper aims at pointing out the difficulties inherent to the EIA. The first is contained in the vague formulation of the Argument, which is the reason why not even an approximate scope of the set objects whose existence is stated by the Argument can be established. The second problem is (...)
    Download  
     
    Export citation  
     
    Bookmark