Switch to: References

Add citations

You must login to add citations.
  1. Constructing ω-stable Structures: Rank k-fields.John T. Baldwin & Kitty Holland - 2003 - Notre Dame Journal of Formal Logic 44 (3):139-147.
    Theorem: For every k, there is an expansion of the theory of algebraically closed fields (of any fixed characteristic) which is almost strongly minimal with Morley rank k.
    Download  
     
    Export citation  
     
    Bookmark  
  • Generic Expansions of Geometric Theories.Somaye Jalili, Massoud Pourmahdian & Nazanin Roshandel Tavana - forthcoming - Journal of Symbolic Logic:1-22.
    As a continuation of ideas initiated in [19], we study bi-colored (generic) expansions of geometric theories in the style of the Fraïssé–Hrushovski construction method. Here we examine that the properties $NTP_{2}$, strongness, $NSOP_{1}$, and simplicity can be transferred to the expansions. As a consequence, while the corresponding bi-colored expansion of a red non-principal ultraproduct of p-adic fields is $NTP_{2}$, the expansion of algebraically closed fields with generic automorphism is a simple theory. Furthermore, these theories are strong with $\operatorname {\mathrm {bdn}}(\text (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Types in Abstract Elementary Classes.Tapani Hyttinen - 2004 - Notre Dame Journal of Formal Logic 45 (2):99-108.
    We suggest a method of finding a notion of type to abstract elementary classes and determine under what assumption on these types the class has a well-behaved homogeneous and universal "monster" model, where homogeneous and universal are defined relative to our notion of type.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructing ω-stable structures: model completeness.John T. Baldwin & Kitty Holland - 2004 - Annals of Pure and Applied Logic 125 (1-3):159-172.
    The projective plane of Baldwin 695) is model complete in a language with additional constant symbols. The infinite rank bicolored field of Poizat 1339) is not model complete. The finite rank bicolored fields of Baldwin and Holland 371; Notre Dame J. Formal Logic , to appear) are model complete. More generally, the finite rank expansions of a strongly minimal set obtained by adding a ‘random’ unary predicate are almost strongly minimal and model complete provided the strongly minimal set is ‘well-behaved’ (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations