Switch to: References

Add citations

You must login to add citations.
  1. Complete Lω1,ω‐sentences with maximal models in multiple cardinalities.John Baldwin & Ioannis Souldatos - 2019 - Mathematical Logic Quarterly 65 (4):444-452.
    In [5], examples of incomplete sentences are given with maximal models in more than one cardinality. The question was raised whether one can find similar examples of complete sentences. In this paper, we give examples of complete ‐sentences with maximal models in more than one cardinality. From (homogeneous) characterizability of κ we construct sentences with maximal models in κ and in one of and more. Indeed, consistently we find sentences with maximal models in uncountably many distinct cardinalities.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Categoricity in multiuniversal classes.Nathanael Ackerman, Will Boney & Sebastien Vasey - 2019 - Annals of Pure and Applied Logic 170 (11):102712.
    The third author has shown that Shelah's eventual categoricity conjecture holds in universal classes: class of structures closed under isomorphisms, substructures, and unions of chains. We extend this result to the framework of multiuniversal classes. Roughly speaking, these are classes with a closure operator that is essentially algebraic closure (instead of, in the universal case, being essentially definable closure). Along the way, we prove in particular that Galois (orbital) types in multiuniversal classes are determined by their finite restrictions, generalizing a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Strong ergodicity phenomena for Bernoulli shifts of bounded algebraic dimension.Aristotelis Panagiotopoulos & Assaf Shani - 2024 - Annals of Pure and Applied Logic 175 (5):103412.
    Download  
     
    Export citation  
     
    Bookmark  
  • Shelah's eventual categoricity conjecture in universal classes: Part I.Sebastien Vasey - 2017 - Annals of Pure and Applied Logic 168 (9):1609-1642.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Disjoint $n$ -Amalgamation and Pseudofinite Countably Categorical Theories.Alex Kruckman - 2019 - Notre Dame Journal of Formal Logic 60 (1):139-160.
    Disjoint n-amalgamation is a condition on a complete first-order theory specifying that certain locally consistent families of types are also globally consistent. In this article, we show that if a countably categorical theory T admits an expansion with disjoint n-amalgamation for all n, then T is pseudofinite. All theories which admit an expansion with disjoint n-amalgamation for all n are simple, but the method can be extended, using filtrations of Fraïssé classes, to show that certain nonsimple theories are pseudofinite. As (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation