Switch to: References

Add citations

You must login to add citations.
  1. Modal translation of substructural logics.Chrysafis Hartonas - 2020 - Journal of Applied Non-Classical Logics 30 (1):16-49.
    In an article dating back in 1992, Kosta Došen initiated a project of modal translations in substructural logics, aiming at generalising the well-known Gödel–McKinsey–Tarski translation of intuitionistic logic into S4. Došen's translation worked well for (variants of) BCI and stronger systems (BCW, BCK), but not for systems below BCI. Dropping structural rules results in logic systems without distribution. In this article, we show, via translation, that every substructural (indeed, every non-distributive) logic is a fragment of a corresponding sorted, residuated (multi) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Lattice logic as a fragment of (2-sorted) residuated modal logic.Chrysafis Hartonas - 2019 - Journal of Applied Non-Classical Logics 29 (2):152-170.
    ABSTRACTCorrespondence and Shalqvist theories for Modal Logics rely on the simple observation that a relational structure is at the same time the basis for a model of modal logic and for a model of first-order logic with a binary predicate for the accessibility relation. If the underlying set of the frame is split into two components,, and, then frames are at the same time the basis for models of non-distributive lattice logic and of two-sorted, residuated modal logic. This suggests that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal Logics for Parallelism, Orthogonality, and Affine Geometries.Philippe Balbiani & Valentin Goranko - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):365-397.
    We introduce and study a variety of modal logics of parallelism, orthogonality, and affine geometries, for which we establish several completeness, decidability and complexity results and state a number of related open, and apparently difficult problems. We also demonstrate that lack of the finite model property of modal logics for sufficiently rich affine or projective geometries (incl. the real affine and projective planes) is a rather common phenomenon.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Logic for physical space: From antiquity to present days.Marco Aiello, Guram Bezhanishvili, Isabelle Bloch & Valentin Goranko - 2012 - Synthese 186 (3):619-632.
    Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora of mathematical tools developed to represent and work with space. Here we take a special look at this evolution by considering the perspective of Logic. From the initial axiomatic efforts of Euclid, we revisit the major milestones (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A ModalWalk Through Space.Marco Aiello & Johan van Benthem - 2002 - Journal of Applied Non-Classical Logics 12 (3-4):319-363.
    We investigate the major mathematical theories of space from a modal standpoint: topology, affine geometry, metric geometry, and vector algebra. This allows us to see new fine-structure in spatial patterns which suggests analogies across these mathematical theories in terms of modal, temporal, and conditional logics. Throughout the modal walk through space, expressive power is analyzed in terms of language design, bisimulations, and correspondence phenomena. The result is both unification across the areas visited, and the uncovering of interesting new questions.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Correspondence Between Kripke Frames and Projective Geometries.Shengyang Zhong - 2018 - Studia Logica 106 (1):167-189.
    In this paper we show that some orthogeometries, i.e. projective geometries each defined using a ternary collinearity relation and equipped with a binary orthogonality relation, which are extensively studied in mathematics and quantum theory, correspond to Kripke frames, each defined using a binary relation, satisfying a few conditions. To be precise, we will define four special kinds of Kripke frames, namely, geometric frames, irreducible geometric frames, complete geometric frames and quantum Kripke frames; and we will show that they correspond to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conditional Logic is Complete for Convexity in the Plane.Johannes Marti - 2023 - Review of Symbolic Logic 16 (2):529-552.
    We prove completeness of preferential conditional logic with respect to convexity over finite sets of points in the Euclidean plane. A conditional is defined to be true in a finite set of points if all extreme points of the set interpreting the antecedent satisfy the consequent. Equivalently, a conditional is true if the antecedent is contained in the convex hull of the points that satisfy both the antecedent and consequent. Our result is then that every consistent formula without nested conditionals (...)
    Download  
     
    Export citation  
     
    Bookmark