Switch to: References

Add citations

You must login to add citations.
  1. Main gap for locally saturated elementary submodels of a homogeneous structure.Tapani Hyttinen & Saharon Shelah - 2001 - Journal of Symbolic Logic 66 (3):1286-1302.
    We prove a main gap theorem for locally saturated submodels of a homogeneous structure. We also study the number of locally saturated models, which are not elementarily embeddable into each other.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Stable generic structures.John T. Baldwin & Niandong Shi - 1996 - Annals of Pure and Applied Logic 79 (1):1-35.
    Hrushovski originated the study of “flat” stable structures in constructing a new strongly minimal set and a stable 0-categorical pseudoplane. We exhibit a set of axioms which for collections of finite structure with dimension function δ give rise to stable generic models. In addition to the Hrushovski examples, this formalization includes Baldwin's almost strongly minimal non-Desarguesian projective plane and several others. We develop the new case where finite sets may have infinite closures with respect to the dimension function δ. In (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Minimal but not strongly minimal structures with arbitrary finite dimensions.Koichiro Ikeda - 2001 - Journal of Symbolic Logic 66 (1):117-126.
    An infinite structure is said to be minimal if each of its definable subset is finite or cofinite. Modifying Hrushovski's method we construct minimal, non strongly minimal structures with arbitrary finite dimensions. This answers negatively to a problem posed by B. I Zilber.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The primal framework II: smoothness.J. T. Baldwin & S. Shelah - 1991 - Annals of Pure and Applied Logic 55 (1):1-34.
    Let be a class of models with a notion of ‘strong’ submodel and of canonically prime model over an increasing chain. We show under appropriate set-theoretic hypotheses that if K is not smooth , then K has many models in certain cardinalities. On the other hand, if K is smooth, we show that in reasonable cardinalities K has a unique homogeneous-universal model. In this situation we introduce the notion of type and prove the equivalence of saturated with homogeneous-universal.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Abstract classes with few models have `homogeneous-universal' models.J. Baldwin & S. Shelah - 1995 - Journal of Symbolic Logic 60 (1):246-265.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ranks and pregeometries in finite diagrams.Olivier Lessmann - 2000 - Annals of Pure and Applied Logic 106 (1-3):49-83.
    The study of classes of models of a finite diagram was initiated by S. Shelah in 1969. A diagram D is a set of types over the empty set, and the class of models of the diagram D consists of the models of T which omit all the types not in D. In this work, we introduce a natural dependence relation on the subsets of the models for the 0-stable case which share many of the formal properties of forking. This (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations