Switch to: References

Add citations

You must login to add citations.
  1. Completeness and categoricity (in power): Formalization without foundationalism.John T. Baldwin - 2014 - Bulletin of Symbolic Logic 20 (1):39-79.
    We propose a criterion to regard a property of a theory (in first or second order logic) as virtuous: the property must have significant mathematical consequences for the theory (or its models). We then rehearse results of Ajtai, Marek, Magidor, H. Friedman and Solovay to argue that for second order logic, ‘categoricity’ has little virtue. For first order logic, categoricity is trivial; but ‘categoricity in power’ has enormous structural consequences for any of the theories satisfying it. The stability hierarchy extends (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum II: Archimedes-Descartes-Hilbert-Tarski†.John T. Baldwin - 2019 - Philosophia Mathematica 27 (1):33-60.
    In Part I of this paper we argued that the first-order systems HP5 and EG are modest complete descriptive axiomatization of most of Euclidean geometry. In this paper we discuss two further modest complete descriptive axiomatizations: Tarksi’s for Cartesian geometry and new systems for adding $$\pi$$. In contrast we find Hilbert’s full second-order system immodest for geometrical purposes but appropriate as a foundation for mathematical analysis.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Characterization of NIP theories by ordered graph-indiscernibles.Lynn Scow - 2012 - Annals of Pure and Applied Logic 163 (11):1624-1641.
    We generalize the Unstable Formula Theorem characterization of stable theories from Shelah [11], that a theory T is stable just in case any infinite indiscernible sequence in a model of T is an indiscernible set. We use a generalized form of indiscernibles from [11], in our notation, a sequence of parameters from an L-structure M, , indexed by an L′-structure I is L′-generalized indiscernible inM if qftpL′=qftpL′ implies tpL=tpL for all same-length, finite ¯,j from I. Let Tg be the theory (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Tree indiscernibilities, revisited.Byunghan Kim, Hyeung-Joon Kim & Lynn Scow - 2014 - Archive for Mathematical Logic 53 (1-2):211-232.
    We give definitions that distinguish between two notions of indiscernibility for a set {aη∣η∈ω>ω}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{a_{\eta} \mid \eta \in ^{\omega>}\omega\}}$$\end{document} that saw original use in Shelah [Classification theory and the number of non-isomorphic models. North-Holland, Amsterdam, 1990], which we name s- and str−indiscernibility. Using these definitions and detailed proofs, we prove s- and str-modeling theorems and give applications of these theorems. In particular, we verify a step in the argument that TP is equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Indiscernibles, EM-Types, and Ramsey Classes of Trees.Lynn Scow - 2015 - Notre Dame Journal of Formal Logic 56 (3):429-447.
    The author has previously shown that for a certain class of structures $\mathcal {I}$, $\mathcal {I}$-indexed indiscernible sets have the modeling property just in case the age of $\mathcal {I}$ is a Ramsey class. We expand this known class of structures from ordered structures in a finite relational language to ordered, locally finite structures which isolate quantifier-free types by way of quantifier-free formulas. This result is applied to give new proofs that certain classes of trees are Ramsey. To aid this (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations