Switch to: References

Add citations

You must login to add citations.
  1. Theorem proving in artificial neural networks: new frontiers in mathematical AI.Markus Pantsar - 2024 - European Journal for Philosophy of Science 14 (1):1-22.
    Computer assisted theorem proving is an increasingly important part of mathematical methodology, as well as a long-standing topic in artificial intelligence (AI) research. However, the current generation of theorem proving software have limited functioning in terms of providing new proofs. Importantly, they are not able to discriminate interesting theorems and proofs from trivial ones. In order for computers to develop further in theorem proving, there would need to be a radical change in how the software functions. Recently, machine learning results (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemic injustice and data science technologies.John Symons & Ramón Alvarado - 2022 - Synthese 200 (2):1-26.
    Technologies that deploy data science methods are liable to result in epistemic harms involving the diminution of individuals with respect to their standing as knowers or their credibility as sources of testimony. Not all harms of this kind are unjust but when they are we ought to try to prevent or correct them. Epistemically unjust harms will typically intersect with other more familiar and well-studied kinds of harm that result from the design, development, and use of data science technologies. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Computer Simulations as Scientific Instruments.Ramón Alvarado - 2022 - Foundations of Science 27 (3):1183-1205.
    Computer simulations have conventionally been understood to be either extensions of formal methods such as mathematical models or as special cases of empirical practices such as experiments. Here, I argue that computer simulations are best understood as instruments. Understanding them as such can better elucidate their actual role as well as their potential epistemic standing in relation to science and other scientific methods, practices and devices.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Social Epistemology and Validation in Agent-Based Social Simulation.David Anzola - 2021 - Philosophy and Technology 34 (4):1333-1361.
    The literature in agent-based social simulation suggests that a model is validated when it is shown to ‘successfully’, ‘adequately’ or ‘satisfactorily’ represent the target phenomenon. The notion of ‘successful’, ‘adequate’ or ‘satisfactory’ representation, however, is both underspecified and difficult to generalise, in part, because practitioners use a multiplicity of criteria to judge representation, some of which are not entirely dependent on the testing of a computational model during validation processes. This article argues that practitioners should address social epistemology to achieve (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Opacity thought through: on the intransparency of computer simulations.Claus Beisbart - 2021 - Synthese 199 (3-4):11643-11666.
    Computer simulations are often claimed to be opaque and thus to lack transparency. But what exactly is the opacity of simulations? This paper aims to answer that question by proposing an explication of opacity. Such an explication is needed, I argue, because the pioneering definition of opacity by P. Humphreys and a recent elaboration by Durán and Formanek are too narrow. While it is true that simulations are opaque in that they include too many computations and thus cannot be checked (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Humanistic interpretation and machine learning.Juho Pääkkönen & Petri Ylikoski - 2021 - Synthese 199:1461–1497.
    This paper investigates how unsupervised machine learning methods might make hermeneutic interpretive text analysis more objective in the social sciences. Through a close examination of the uses of topic modeling—a popular unsupervised approach in the social sciences—it argues that the primary way in which unsupervised learning supports interpretation is by allowing interpreters to discover unanticipated information in larger and more diverse corpora and by improving the transparency of the interpretive process. This view highlights that unsupervised modeling does not eliminate the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Software engineering standards for epidemiological models.Jack K. Horner & John F. Symons - 2020 - History and Philosophy of the Life Sciences 42 (4):1-24.
    There are many tangled normative and technical questions involved in evaluating the quality of software used in epidemiological simulations. In this paper we answer some of these questions and offer practical guidance to practitioners, funders, scientific journals, and consumers of epidemiological research. The heart of our paper is a case study of the Imperial College London covid-19 simulator, set in the context of recent work in epistemology of simulation and philosophy of epidemiology.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Epistemic Importance of Technology in Computer Simulation and Machine Learning.Michael Resch & Andreas Kaminski - 2019 - Minds and Machines 29 (1):1-9.
    Scientificity is essentially methodology. The use of information technology as methodological instruments in science has been increasing for decades, this raises the question: Does this transform science? This question is the subject of the Special Issue in Minds and Machines “The epistemological significance of methods in computer simulation and machine learning”. We show that there is a technological change in this area that has three methodological and epistemic consequences: methodological opacity, reproducibility issues, and altered forms of justification.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Epistemic Entitlements and the Practice of Computer Simulation.John Symons & Ramón Alvarado - 2019 - Minds and Machines 29 (1):37-60.
    What does it mean to trust the results of a computer simulation? This paper argues that trust in simulations should be grounded in empirical evidence, good engineering practice, and established theoretical principles. Without these constraints, computer simulation risks becoming little more than speculation. We argue against two prominent positions in the epistemology of computer simulation and defend a conservative view that emphasizes the difference between the norms governing scientific investigation and those governing ordinary epistemic practices.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Can we trust Big Data? Applying philosophy of science to software.John Symons & Ramón Alvarado - 2016 - Big Data and Society 3 (2).
    We address some of the epistemological challenges highlighted by the Critical Data Studies literature by reference to some of the key debates in the philosophy of science concerning computational modeling and simulation. We provide a brief overview of these debates focusing particularly on what Paul Humphreys calls epistemic opacity. We argue that debates in Critical Data Studies and philosophy of science have neglected the problem of error management and error detection. This is an especially important feature of the epistemology of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Collaborative Practice, Epistemic Dependence and Opacity: The case of space telescope data processing.Julie Jebeile - 2018 - Philosophia Scientiae 22:59-78.
    Wagenknecht a récemment introduit une distinction conceptuelle entre dépendance épistémique translucide et dépendance épistémique opaque, dans le but de mieux rendre compte de la diversité des relations de dépendance épistémique au sein des pratiques collaboratives de recherche. Dans la continuité de son travail, mon but est d’expliciter les différents types d’expertise requis lorsque sont employés instruments et ordinateurs dans la production de connaissance, et d’identifier des sources potentielles d’opacité. Mon analyse s’appuie sur un cas contemporain de création de connaissance scientifique, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computer Simulations in Science.Eric Winsberg - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   37 citations