Switch to: References

Add citations

You must login to add citations.
  1. Equivocation Axiom on First Order Languages.Soroush Rafiee Rad - 2017 - Studia Logica 105 (1):121-152.
    In this paper we investigate some mathematical consequences of the Equivocation Principle, and the Maximum Entropy models arising from that, for first order languages. We study the existence of Maximum Entropy models for these theories in terms of the quantifier complexity of the theory and will investigate some invariance and structural properties of such models.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Entropy-Limit (Conjecture) for $$Sigma _2$$ Σ 2 -Premisses.Jürgen Landes - 2020 - Studia Logica 109 (2):1-20.
    The application of the maximum entropy principle to determine probabilities on finite domains is well-understood. Its application to infinite domains still lacks a well-studied comprehensive approach. There are two different strategies for applying the maximum entropy principle on first-order predicate languages: applying it to finite sublanguages and taking a limit; comparing finite entropies of probability functions defined on the language as a whole. The entropy-limit conjecture roughly says that these two strategies result in the same probabilities. While the conjecture is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards the entropy-limit conjecture.Jürgen Landes, Soroush Rafiee Rad & Jon Williamson - 2020 - Annals of Pure and Applied Logic 172 (2):102870.
    The maximum entropy principle is widely used to determine non-committal probabilities on a finite domain, subject to a set of constraints, but its application to continuous domains is notoriously problematic. This paper concerns an intermediate case, where the domain is a first-order predicate language. Two strategies have been put forward for applying the maximum entropy principle on such a domain: applying it to finite sublanguages and taking the pointwise limit of the resulting probabilities as the size n of the sublanguage (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From Bayesian epistemology to inductive logic.Jon Williamson - 2013 - Journal of Applied Logic 11 (4):468-486.
    Inductive logic admits a variety of semantics (Haenni et al., 2011, Part 1). This paper develops semantics based on the norms of Bayesian epistemology (Williamson, 2010, Chapter 7). §1 introduces the semantics and then, in §2, the paper explores methods for drawing inferences in the resulting logic and compares the methods of this paper with the methods of Barnett and Paris (2008). §3 then evaluates this Bayesian inductive logic in the light of four traditional critiques of inductive logic, arguing (i) (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Probabilistic characterisation of models of first-order theories.Soroush Rafiee Rad - 2021 - Annals of Pure and Applied Logic 172 (1):102875.
    We study probabilistic characterisation of a random model of a finite set of first order axioms. Given a set of first order axioms.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Justifying Objective Bayesianism on Predicate Languages.Jürgen Landes & Jon Williamson - 2015 - Entropy 17 (4):2459-2543.
    Objective Bayesianism says that the strengths of one’s beliefs ought to be probabilities, calibrated to physical probabilities insofar as one has evidence of them, and otherwise sufficiently equivocal. These norms of belief are often explicated using the maximum entropy principle. In this paper we investigate the extent to which one can provide a unified justification of the objective Bayesian norms in the case in which the background language is a first-order predicate language, with a view to applying the resulting formalism (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Determining Maximal Entropy Functions for Objective Bayesian Inductive Logic.Juergen Landes, Soroush Rafiee Rad & Jon Williamson - 2022 - Journal of Philosophical Logic 52 (2):555-608.
    According to the objective Bayesian approach to inductive logic, premisses inductively entail a conclusion just when every probability function with maximal entropy, from all those that satisfy the premisses, satisfies the conclusion. When premisses and conclusion are constraints on probabilities of sentences of a first-order predicate language, however, it is by no means obvious how to determine these maximal entropy functions. This paper makes progress on the problem in the following ways. Firstly, we introduce the concept of a limit in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation