Switch to: References

Add citations

You must login to add citations.
  1. The persistence of memory: Surreal trajectories in Bohm's theory.Jeffrey A. Barrett - 2000 - Philosophy of Science 67 (4):680-703.
    In this paper I describe the history of the surreal trajectories problem and argue that in fact it is not a problem for Bohm's theory. More specifically, I argue that one can take the particle trajectories predicted by Bohm's theory to be the actual trajectories that particles follow and that there is no reason to suppose that good particle detectors are somehow fooled in the context of the surreal trajectories experiments. Rather than showing that Bohm's theory predicts the wrong particle (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Feyerabend on the Quantum Theory of Measurement: A Reassessment.Daniel Kuby & Patrick Fraser - 2022 - International Studies in the Philosophy of Science 35 (1):23-49.
    In 1957, Feyerabend delivered a paper titled ‘On the Quantum-Theory of Measurement’ at the Colston Research Symposium in Bristol to sketch a completion of von Neumann's measurement scheme without collapse, using only unitary quantum dynamics and well-motivated statistical assumptions about macroscopic quantum systems. Feyerabend's paper has been recognised as an early contribution to quantum measurement, anticipating certain aspects of decoherence. Our paper reassesses the physical and philosophical content of Feyerabend's contribution, detailing the technical steps as well as its overall philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The emergence and interpretation of probability in Bohmian mechanics.Craig Callender - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):351-370.
    A persistent question about the deBroglie–Bohm interpretation of quantum mechanics concerns the understanding of Born’s rule in the theory. Where do the quantum mechanical probabilities come from? How are they to be interpreted? These are the problems of emergence and interpretation. In more than 50 years no consensus regarding the answers has been achieved. Indeed, mirroring the foundational disputes in statistical mechanics, the answers to each question are surprisingly diverse. This paper is an opinionated survey of this literature. While acknowledging (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Measurement and the justification of the statistical postulate in Bohm's causal interpretation of quantum mechanics.J. Subramanyam - 1997 - Synthese 113 (3):423-445.
    I briefly sketch Bohm's causal interpretation (BCI) and its solution to the measurement problem. Crucial to BCI's no-collapse account of both ideal and non-ideal measurement is the existence of particles in addition to wavefunctions. The particles in their role as the producers of the observable experimental outcomes render practical considerations, such as what observables can be reasonably measured or how to get rid of interference terms in non-ideal measurements, secondary to BCI's account of measurement. I then explain why it is (...)
    Download  
     
    Export citation  
     
    Bookmark