Switch to: References

Add citations

You must login to add citations.
  1. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bayle, Hume y los molinos de viento.Andrés Páez - 2000 - Ideas Y Valores 49 (113):29-44.
    El análisis de los conceptos de espacio y tiempo es generalmente considerado uno de los aspectos menos satisfactorios de la obra de Hume. Kemp Smith ha demostrado que en esta sección del Tratado Hume estaba respondiendo a los argumentos que Pierre Bayle había utilizado para probar que el razonamiento humano siempre termina refutándose a sí mismo. En este ensayo expongo las falacias en los argumentos de Bayle, las cuales están basadas en una comprensión inadecuada del concepto de extensión. Hume no (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Induction before Hume.J. R. Milton - 1987 - British Journal for the Philosophy of Science 38 (1):49-74.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The mathematical form of measurement and the argument for Proposition I in Newton’s Principia.Katherine Dunlop - 2012 - Synthese 186 (1):191-229.
    Newton characterizes the reasoning of Principia Mathematica as geometrical. He emulates classical geometry by displaying, in diagrams, the objects of his reasoning and comparisons between them. Examination of Newton’s unpublished texts shows that Newton conceives geometry as the science of measurement. On this view, all measurement ultimately involves the literal juxtaposition—the putting-together in space—of the item to be measured with a measure, whose dimensions serve as the standard of reference, so that all quantity is ultimately related to spatial extension. I (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Reality and the coloured points in Hume's treatise.Marina Frasca-Spada - 1998 - British Journal for the History of Philosophy 6 (1):25 – 46.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reality and the coloured points in Hume's treatise 1.Marina Frasca-Spada - 1997 - British Journal for the History of Philosophy 5 (2):297-319.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Jesuits and the Method of Indivisibles.David Sherry - 2018 - Foundations of Science 23 (2):367-392.
    Alexander’s "Infinitesimal. How a dangerous mathematical theory shaped the modern world"(London: Oneworld Publications, 2015) is right to argue that the Jesuits had a chilling effect on Italian mathematics, but I question his account of the Jesuit motivations for suppressing indivisibles. Alexander alleges that the Jesuits’ intransigent commitment to Aristotle and Euclid explains their opposition to the method of indivisibles. A different hypothesis, which Alexander doesn’t pursue, is a conflict between the method of indivisibles and the Catholic doctrine of the Eucharist. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations