Switch to: References

Add citations

You must login to add citations.
  1. A mechanistic perspective on canonical neural computation.Abel Wajnerman Paz - 2017 - Philosophical Psychology 30 (3):209-230.
    Although it has been argued that mechanistic explanation is compatible with abstraction, there are still doubts about whether mechanism can account for the explanatory power of significant abstract models in computational neuroscience. Chirimuuta has recently claimed that models describing canonical neural computations must be evaluated using a non-mechanistic framework. I defend two claims regarding these models. First, I argue that their prevailing neurocognitive interpretation is mechanistic. Additionally, a criterion recently proposed by Levy and Bechtel to legitimize mechanistic abstract models, and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Big Data, epistemology and causality: Knowledge in and knowledge out in EXPOsOMICS.Stefano Canali - 2016 - Big Data and Society 3 (2).
    Recently, it has been argued that the use of Big Data transforms the sciences, making data-driven research possible and studying causality redundant. In this paper, I focus on the claim on causal knowledge by examining the Big Data project EXPOsOMICS, whose research is funded by the European Commission and considered capable of improving our understanding of the relation between exposure and disease. While EXPOsOMICS may seem the perfect exemplification of the data-driven view, I show how causal knowledge is necessary for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Estructuras y mecanismos en la fisiología.César Lorenzano - 2010 - Scientiae Studia 8 (1):41-67.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Varieties of difference-makers: Considerations on chirimuuta’s approach to non-causal explanation in neuroscience.Abel Wajnerman Paz - 2019 - Manuscrito 42 (1):91-119.
    Causal approaches to explanation often assume that a model explains by describing features that make a difference regarding the phenomenon. Chirimuuta claims that this idea can be also used to understand non-causal explanation in computational neuroscience. She argues that mathematical principles that figure in efficient coding explanations are non-causal difference-makers. Although these principles cannot be causally altered, efficient coding models can be used to show how would the phenomenon change if the principles were modified in counterpossible situations. The problem is (...)
    Download  
     
    Export citation  
     
    Bookmark