Switch to: References

Add citations

You must login to add citations.
  1. Polish G-spaces and continuous logic.A. Ivanov & B. Majcher-Iwanow - 2017 - Annals of Pure and Applied Logic 168 (4):749-775.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categories of Topological Spaces and Scattered Theories.R. W. Knight - 2007 - Notre Dame Journal of Formal Logic 48 (1):53-77.
    We offer a topological treatment of scattered theories intended to help to explain the parallelism between, on the one hand, the theorems provable using Descriptive Set Theory by analysis of the space of countable models and, on the other, those provable by studying a tree of theories in a hierarchy of fragments of infinintary logic. We state some theorems which are, we hope, a step on the road to fully understanding counterexamples to Vaught's Conjecture. This framework is in the early (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Polish group actions, nice topologies, and admissible sets.Barbara Majcher-Iwanow - 2008 - Mathematical Logic Quarterly 54 (6):597-616.
    Let G be a closed subgroup of S∞ and X be a Polish G -space. To every x ∈ X we associate an admissible set Ax and show how questions about X which involve Baire category can be formalized in Ax.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)2004 Summer Meeting of the Association for Symbolic Logic.Wolfram Pohlers - 2005 - Bulletin of Symbolic Logic 11 (2):249-312.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gδ‐pieces of canonical partitions of G‐spaces.Barbara Majcher-Iwanow - 2005 - Mathematical Logic Quarterly 51 (5):450-461.
    Generalizing model companions from model theory we define companions of pieces of canonical partitions of Polish G-spaces. This unifies several constructions from logic. The central problem of the paper is the existence of companions which form a G-orbit which is a Gδ-set. We describe companions of some typical G-spaces.
    Download  
     
    Export citation  
     
    Bookmark   1 citation