Switch to: References

Add citations

You must login to add citations.
  1. Falsification-Aware Calculi and Semantics for Normal Modal Logics Including S4 and S5.Norihiro Kamide - 2023 - Journal of Logic, Language and Information 32 (3):395-440.
    Falsification-aware (hyper)sequent calculi and Kripke semantics for normal modal logics including S4 and S5 are introduced and investigated in this study. These calculi and semantics are constructed based on the idea of a falsification-aware framework for Nelson’s constructive three-valued logic. The cut-elimination and completeness theorems for the proposed calculi and semantics are proved.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Sequent Calculi for Orthologic with Strict Implication.Tomoaki Kawano - 2022 - Bulletin of the Section of Logic 51 (1):73-89.
    In this study, new sequent calculi for a minimal quantum logic ) are discussed that involve an implication. The sequent calculus \ for \ was established by Nishimura, and it is complete with respect to ortho-models. As \ does not contain implications, this study adopts the strict implication and constructs two new sequent calculi \ and \ as the expansions of \. Both \ and \ are complete with respect to the O-models. In this study, the completeness and decidability theorems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal multilattice logics with Tarski, Kuratowski, and Halmos operators.Oleg Grigoriev & Yaroslav Petrukhin - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Generalized Proof-Theoretic Approach to Logical Argumentation Based on Hypersequents.AnneMarie Borg, Christian Straßer & Ofer Arieli - 2020 - Studia Logica 109 (1):167-238.
    In this paper we introduce hypersequent-based frameworks for the modelling of defeasible reasoning by means of logic-based argumentation and the induced entailment relations. These structures are an extension of sequent-based argumentation frameworks, in which arguments and the attack relations among them are expressed not only by Gentzen-style sequents, but by more general expressions, called hypersequents. This generalization allows us to overcome some of the known weaknesses of logical argumentation frameworks and to prove several desirable properties of the entailments that are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rooted Hypersequent Calculus for Modal Logic S5.Hamzeh Mohammadi & Mojtaba Aghaei - 2023 - Logica Universalis 17 (3):269-295.
    We present a rooted hypersequent calculus for modal propositional logic S5. We show that all rules of this calculus are invertible and that the rules of weakening, contraction, and cut are admissible. Soundness and completeness are established as well.
    Download  
     
    Export citation  
     
    Bookmark  
  • Tautology Elimination, Cut Elimination, and S5.Andrezj Indrzejczak - 2017 - Logic and Logical Philosophy 26 (4):461-471.
    Tautology elimination rule was successfully applied in automated deduction and recently considered in the framework of sequent calculi where it is provably equivalent to cut rule. In this paper we focus on the advantages of proving admissibility of tautology elimination rule instead of cut for sequent calculi. It seems that one may find simpler proofs of admissibility for tautology elimination than for cut admissibility. Moreover, one may prove its admissibility for some calculi where constructive proofs of cut admissibility fail. As (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cut elimination in hypersequent calculus for some logics of linear time.Andrzej Indrzejczak - 2019 - Review of Symbolic Logic 12 (4):806-822.
    This is a sequel article to [10] where a hypersequent calculus for some temporal logics of linear frames includingKt4.3and its extensions for dense and serial flow of time was investigated in detail. A distinctive feature of this approach is that hypersequents are noncommutative, i.e., they are finite lists of sequents in contrast to other hypersequent approaches using sets or multisets. Such a system in [10] was proved to be cut-free HC formalization of respective logics by means of semantical argument. In (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On a multilattice analogue of a hypersequent S5 calculus.Oleg Grigoriev & Yaroslav Petrukhin - forthcoming - Logic and Logical Philosophy:1.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Cut Elimination Theorem for Non-Commutative Hypersequent Calculus.Andrzej Indrzejczak - 2017 - Bulletin of the Section of Logic 46 (1/2).
    Hypersequent calculi can formalize various non-classical logics. In [9] we presented a non-commutative variant of HC for the weakest temporal logic of linear frames Kt4.3 and some its extensions for dense and serial flow of time. The system was proved to be cut-free HC formalization of respective temporal logics by means of Schütte/Hintikka-style semantical argument using models built from saturated hypersequents. In this paper we present a variant of this calculus for Kt4.3 with a constructive syntactical proof of cut elimination.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Simple Decision Procedure for S5 in Standard Cut-Free Sequent Calculus.Andrzej Indrzejczak - 2016 - Bulletin of the Section of Logic 45 (2).
    In the paper a decision procedure for S5 is presented which uses a cut-free sequent calculus with additional rules allowing a reduction to normal modal forms. It utilizes the fact that in S5 every formula is equivalent to some 1-degree formula, i.e. a modally-flat formula with modal functors having only boolean formulas in its scope. In contrast to many sequent calculi for S5 the presented system does not introduce any extra devices. Thus it is a standard version of SC but (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Linear time in hypersequent framework.Andrzej Indrzejczak - 2016 - Bulletin of Symbolic Logic 22 (1):121-144.
    Hypersequent calculus, developed by A. Avron, is one of the most interesting proof systems suitable for nonclassical logics. Although HC has rather simple form, it increases significantly the expressive power of standard sequent calculi. In particular, HC proved to be very useful in the field of proof theory of various nonclassical logics. It may seem surprising that it was not applied to temporal logics so far. In what follows, we discuss different approaches to formalization of logics of linear frames and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations