Switch to: References

Add citations

You must login to add citations.
  1. Light affine lambda calculus and polynomial time strong normalization.Kazushige Terui - 2007 - Archive for Mathematical Logic 46 (3-4):253-280.
    Light Linear Logic (LLL) and Intuitionistic Light Affine Logic (ILAL) are logics that capture polynomial time computation. It is known that every polynomial time function can be represented by a proof of these logics via the proofs-as-programs correspondence. Furthermore, there is a reduction strategy which normalizes a given proof in polynomial time. Given the latter polynomial time “weak” normalization theorem, it is natural to ask whether a “strong” form of polynomial time normalization theorem holds or not. In this paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Safe recursion with higher types and BCK-algebra.Martin Hofmann - 2000 - Annals of Pure and Applied Logic 104 (1-3):113-166.
    In previous work the author has introduced a lambda calculus SLR with modal and linear types which serves as an extension of Bellantoni–Cook's function algebra BC to higher types. It is a step towards a functional programming language in which all programs run in polynomial time. In this paper we develop a semantics of SLR using BCK -algebras consisting of certain polynomial-time algorithms. It will follow from this semantics that safe recursion with arbitrary result type built up from N and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Control structures in programs and computational complexity.Karl-Heinz Niggl - 2005 - Annals of Pure and Applied Logic 133 (1-3):247-273.
    A key problem in implicit complexity is to analyse the impact on program run times of nesting control structures, such as recursion in all finite types in functional languages or for-do statements in imperative languages.Three types of programs are studied. One type of program can only use ground type recursion. Another is concerned with imperative programs: ordinary loop programs and stack programs. Programs of the third type can use higher type recursion on notation as in functional programming languages.The present approach (...)
    Download  
     
    Export citation  
     
    Bookmark