Switch to: References

Add citations

You must login to add citations.
  1. Moral concerns are differentially observable in language.Brendan Kennedy, Mohammad Atari, Aida Mostafazadeh Davani, Joe Hoover, Ali Omrani, Jesse Graham & Morteza Dehghani - 2021 - Cognition 212 (C):104696.
    Download  
     
    Export citation  
     
    Bookmark  
  • Policy advice and best practices on bias and fairness in AI.Jose M. Alvarez, Alejandra Bringas Colmenarejo, Alaa Elobaid, Simone Fabbrizzi, Miriam Fahimi, Antonio Ferrara, Siamak Ghodsi, Carlos Mougan, Ioanna Papageorgiou, Paula Reyero, Mayra Russo, Kristen M. Scott, Laura State, Xuan Zhao & Salvatore Ruggieri - 2024 - Ethics and Information Technology 26 (2):1-26.
    The literature addressing bias and fairness in AI models (fair-AI) is growing at a fast pace, making it difficult for novel researchers and practitioners to have a bird’s-eye view picture of the field. In particular, many policy initiatives, standards, and best practices in fair-AI have been proposed for setting principles, procedures, and knowledge bases to guide and operationalize the management of bias and fairness. The first objective of this paper is to concisely survey the state-of-the-art of fair-AI methods and resources, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The landscape of data and AI documentation approaches in the European policy context.Josep Soler-Garrido, Blagoj Delipetrev, Isabelle Hupont & Marina Micheli - 2023 - Ethics and Information Technology 25 (4):1-21.
    Nowadays, Artificial Intelligence (AI) is present in all sectors of the economy. Consequently, both data-the raw material used to build AI systems- and AI have an unprecedented impact on society and there is a need to ensure that they work for its benefit. For this reason, the European Union has put data and trustworthy AI at the center of recent legislative initiatives. An important element in these regulations is transparency, understood as the provision of information to relevant stakeholders to support (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Public procurement of artificial intelligence systems: new risks and future proofing.Merve Hickok - forthcoming - AI and Society:1-15.
    Public entities around the world are increasingly deploying artificial intelligence and algorithmic decision-making systems to provide public services or to use their enforcement powers. The rationale for the public sector to use these systems is similar to private sector: increase efficiency and speed of transactions and lower the costs. However, public entities are first and foremost established to meet the needs of the members of society and protect the safety, fundamental rights, and wellbeing of those they serve. Currently AI systems (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations