Switch to: References

Add citations

You must login to add citations.
  1. The category of MV-pairs.Antonio Di Nola, Michal Holčapek & Gejza Jenča - 2009 - Logic Journal of the IGPL 17 (4):395-412.
    An MV-pair is a pair , where B is a Boolean algebra and G is a subgroup of the automorphism group of B satisfying certain condition. Recently it was proved by one of the authors that for an MV-pair , ∼G is an effect-algebraic congruence and B/∼G is an MV-algebra. Moreover, every MV-algebra M can be represented by an MV-pair in this way. In this paper we show that one can define a suitable category of MV-pairs in such a way (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Module Structure on Effect Algebras.Simin Saidi Goraghani & Rajab Ali Borzooei - 2020 - Bulletin of the Section of Logic 49 (3):269-290.
    In this paper, by considering the notions of effect algebra and product effect algebra, we define the concept of effect module. Then we investigate some properties of effect modules, and we present some examples on them. Finally, we introduce some topologies on effect modules.
    Download  
     
    Export citation  
     
    Bookmark  
  • MV and Heyting Effect Algebras.D. J. Foulis - 2000 - Foundations of Physics 30 (10):1687-1706.
    We review the fact that an MV-algebra is the same thing as a lattice-ordered effect algebra in which disjoint elements are orthogonal. An HMV-algebra is an MV-effect algebra that is also a Heyting algebra and in which the Heyting center and the effect-algebra center coincide. We show that every effect algebra with the generalized comparability property is an HMV-algebra. We prove that, for an MV-effect algebra E, the following conditions are mutually equivalent: (i) E is HMV, (ii) E has a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Logical Connectives on Lattice Effect Algebras.D. J. Foulis & S. Pulmannová - 2012 - Studia Logica 100 (6):1291-1315.
    An effect algebra is a partial algebraic structure, originally formulated as an algebraic base for unsharp quantum measurements. In this article we present an approach to the study of lattice effect algebras (LEAs) that emphasizes their structure as algebraic models for the semantics of (possibly) non-standard symbolic logics. This is accomplished by focusing on the interplay among conjunction, implication, and negation connectives on LEAs, where the conjunction and implication connectives are related by a residuation law. Special cases of LEAs are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Universal Group of a Heyting Effect Algebra.David J. Foulis - 2006 - Studia Logica 84 (3):407-424.
    A Heyting effect algebra is a lattice-ordered effect algebra that is at the same time a Heyting algebra and for which the Heyting center coincides with the effect-algebra center. Every HEA is both an MV-algebra and a Stone-Heyting algebra and is realized as the unit interval in its own universal group. We show that a necessary and sufficient condition that an effect algebra is an HEA is that its universal group has the central comparability and central Rickart properties.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • States on Pseudo Effect Algebras and Integrals.Anatolij Dvurečenskij - 2011 - Foundations of Physics 41 (7):1143-1162.
    We show that every state on an interval pseudo effect algebra E satisfying an appropriate version of the Riesz Decomposition Property (RDP for short) is an integral through a regular Borel probability measure defined on the Borel σ-algebra of a Choquet simplex K. In particular, if E satisfies the strongest type of RDP, the representing Borel probability measure can be uniquely chosen to have its support in the set of the extreme points of K.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Atomic Effect Algebras with the Riesz Decomposition Property.Anatolij Dvurečenskij & Yongjian Xie - 2012 - Foundations of Physics 42 (8):1078-1093.
    We discuss the relationships between effect algebras with the Riesz Decomposition Property and partially ordered groups with interpolation. We show that any σ-orthocomplete atomic effect algebra with the Riesz Decomposition Property is an MV-effect algebras, and we apply this result for pseudo-effect algebras and for states.
    Download  
     
    Export citation  
     
    Bookmark   1 citation