Switch to: References

Add citations

You must login to add citations.
  1. A geometric introduction to forking and thorn-forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):1-20.
    A ternary relation [Formula: see text] between subsets of the big model of a complete first-order theory T is called an independence relation if it satisfies a certain set of axioms. The primary example is forking in a simple theory, but o-minimal theories are also known to have an interesting independence relation. Our approach in this paper is to treat independence relations as mathematical objects worth studying. The main application is a better understanding of thorn-forking, which turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Lovely pairs of models: the non first order case.Itay Ben-Yaacov - 2004 - Journal of Symbolic Logic 69 (3):641-662.
    We prove that for every simple theory T there is a compact abstract theory T.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Elementary Equivalence in Positive Logic Via Prime Products.Tommaso Moraschini, Johann J. Wannenburg & Kentaro Yamamoto - forthcoming - Journal of Symbolic Logic:1-18.
    We introduce prime products as a generalization of ultraproducts for positive logic. Prime products are shown to satisfy a version of Łoś’s Theorem restricted to positive formulas, as well as the following variant of the Keisler Isomorphism Theorem: under the generalized continuum hypothesis, two models have the same positive theory if and only if they have isomorphic prime powers of ultrapowers.
    Download  
     
    Export citation  
     
    Bookmark  
  • Thorn-forking in continuous logic.Clifton Ealy & Isaac Goldbring - 2012 - Journal of Symbolic Logic 77 (1):63-93.
    We study thorn forking and rosiness in the context of continuous logic. We prove that the Urysohn sphere is rosy (with respect to finitary imaginaries), providing the first example of an essentially continuous unstable theory with a nice notion of independence. In the process, we show that a real rosy theory which has weak elimination of finitary imaginaries is rosy with respect to finitary imaginaries, a fact which is new even for discrete first-order real rosy theories.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Univers positifs.Bruno Poizat - 2006 - Journal of Symbolic Logic 71 (3):969 - 976.
    We define elementary extension and elementary equivalence in Positive Logic.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Positive indiscernibles.Mark Kamsma - 2024 - Archive for Mathematical Logic 63 (7):921-940.
    We generalise various theorems for finding indiscernible trees and arrays to positive logic: based on an existing modelling theorem for s-trees, we prove modelling theorems for str-trees, str$$_0$$ 0 -trees (the reduct of str-trees that forgets the length comparison relation) and arrays. In doing so, we prove stronger versions for basing—rather than locally basing or EM-basing—str-trees on s-trees and str$$_0$$ 0 -trees on str-trees. As an application we show that a thick positive theory has k-$$\mathsf {TP_2}$$ TP 2 iff it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An introduction to theories without the independence property.Hans Adler - unknown
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Dividing Lines Between Positive Theories.Anna Dmitrieva, Francesco Gallinaro & Mark Kamsma - forthcoming - Journal of Symbolic Logic:1-25.
    We generalise the properties$\mathsf {OP}$,$\mathsf {IP}$,k-$\mathsf {TP}$,$\mathsf {TP}_{1}$,k-$\mathsf {TP}_{2}$,$\mathsf {SOP}_{1}$,$\mathsf {SOP}_{2}$, and$\mathsf {SOP}_{3}$to positive logic, and prove various implications and equivalences between them. We also provide a characterisation of stability in positive logic in analogy with the one in full first-order logic, both on the level of formulas and on the level of theories. For simple theories there are the classically equivalent definitions of not having$\mathsf {TP}$and dividing having local character, which we prove to be equivalent in positive logic as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Positive model theory and compact abstract theories.Itay Ben-Yaacov - 2003 - Journal of Mathematical Logic 3 (01):85-118.
    We develop positive model theory, which is a non first order analogue of classical model theory where compactness is kept at the expense of negation. The analogue of a first order theory in this framework is a compact abstract theory: several equivalent yet conceptually different presentations of this notion are given. We prove in particular that Banach and Hilbert spaces are compact abstract theories, and in fact very well-behaved as such.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Simple almost hyperdefinable groups.Itaï Ben-Yaacov - 2006 - Journal of Mathematical Logic 6 (01):69-88.
    We lay down the groundwork for the treatment of almost hyperdefinable groups: notions from [5] are put into a natural hierarchy, and new notions, essential to the study to such groups, fit elegantly into this hierarchy. We show that "classical" properties of definable and hyperdefinable groups in simple theories can be generalised to this context. In particular, we prove the existence of stabilisers of Lascar strong types and of the connected and locally connected components of subgroups, and that in a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Compactness and independence in non first order frameworks.Itay Ben-Yaacov - 2005 - Bulletin of Symbolic Logic 11 (1):28-50.
    This communication deals with positive model theory, a non first order model theoretic setting which preserves compactness at the cost of giving up negation. Positive model theory deals transparently with hyperimaginaries, and accommodates various analytic structures which defy direct first order treatment. We describe the development of simplicity theory in this setting, and an application to the lovely pairs of models of simple theories without the weak non finite cover property.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Independence relations for exponential fields.Vahagn Aslanyan, Robert Henderson, Mark Kamsma & Jonathan Kirby - 2023 - Annals of Pure and Applied Logic 174 (8):103288.
    Download  
     
    Export citation  
     
    Bookmark  
  • Independence in randomizations.Uri Andrews, Isaac Goldbring & H. Jerome Keisler - 2019 - Journal of Mathematical Logic 19 (1):1950005.
    The randomization of a complete first-order theory [Formula: see text] is the complete continuous theory [Formula: see text] with two sorts, a sort for random elements of models of [Formula: see text] and a sort for events in an underlying atomless probability space. We study independence relations and related ternary relations on the randomization of [Formula: see text]. We show that if [Formula: see text] has the exchange property and [Formula: see text], then [Formula: see text] has a strict independence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Lovely pairs of models: the non first order case.Itaï Ben Yaacov - 2004 - Journal of Symbolic Logic 69 (3):641-662.
    We prove that for every simple theory $T$ (or even simple thick compact abstract theory) there is a (unique) compact abstract theory $T^fP$ whose saturated models are the lovely pairs of $T$. Independence-theoretic results that were proved in [Ben Yaacov, Pillay, Vassiliev - Lovely pairs of models] when $T^fP$ is a first order theory are proved for the general case: in particular $T^fP$ is simple and we characterise independence.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Constructing an almost hyperdefinable group.Itay Ben-Yaacov, Ivan Tomašić & Frank O. Wagner - 2004 - Journal of Mathematical Logic 4 (02):181-212.
    This paper completes the proof of the group configuration theorem for simple theories started in [1]. We introduce the notion of an almost hyperdefinable structure, and show that it has a reasonable model theory. We then construct an almost hyperdefinable group from a polygroup chunk.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A proof of completeness for continuous first-order logic.Itaï Ben Yaacov & Arthur Paul Pedersen - 2010 - Journal of Symbolic Logic 75 (1):168-190.
    -/- Continuous first-order logic has found interest among model theorists who wish to extend the classical analysis of “algebraic” structures (such as fields, group, and graphs) to various natural classes of complete metric structures (such as probability algebras, Hilbert spaces, and Banach spaces). With research in continuous first-order logic preoccupied with studying the model theory of this framework, we find a natural question calls for attention. Is there an interesting set of axioms yielding a completeness result? -/- The primary purpose (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Stability and stable groups in continuous logic.Itaï Ben Yaacov - 2010 - Journal of Symbolic Logic 75 (3):1111-1136.
    We develop several aspects of local and global stability in continuous first order logic. In particular, we study type-definable groups and genericity.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Maximal Stable Quotients of Invariant Types in Nip Theories.Krzysztof Krupiński & Adrián Portillo - forthcoming - Journal of Symbolic Logic:1-25.
    For a NIP theory T, a sufficiently saturated model ${\mathfrak C}$ of T, and an invariant (over some small subset of ${\mathfrak C}$ ) global type p, we prove that there exists a finest relatively type-definable over a small set of parameters from ${\mathfrak C}$ equivalence relation on the set of realizations of p which has stable quotient. This is a counterpart for equivalence relations of the main result of [2] on the existence of maximal stable quotients of type-definable groups (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dividing in the algebra of compact operators.Alexander Berenstein - 2004 - Journal of Symbolic Logic 69 (3):817-829.
    We interpret the algebra of finite rank operators as imaginaries inside a Hilbert space. We prove that the Hilbert space enlarged with these imaginaries has built-in canonical bases.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bilinear spaces over a fixed field are simple unstable.Mark Kamsma - 2023 - Annals of Pure and Applied Logic 174 (6):103268.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Nsop-Like Independence in Aecats.Mark Kamsma - 2024 - Journal of Symbolic Logic 89 (2):724-757.
    The classes stable, simple, and NSOP $_1$ in the stability hierarchy for first-order theories can be characterised by the existence of a certain independence relation. For each of them there is a canonicity theorem: there can be at most one nice independence relation. Independence in stable and simple first-order theories must come from forking and dividing (which then coincide), and for NSOP $_1$ theories it must come from Kim-dividing. We generalise this work to the framework of Abstract Elementary Categories (AECats) (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Imaginaries in Hilbert spaces.Itay Ben-Yaacov & Alexander Berenstein - 2004 - Archive for Mathematical Logic 43 (4):459-466.
    We characterise imaginaries (up to interdefinability) in Hilbert spaces using a Galois theory for compact unitary groups.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Supersimplicity and Lovely Pairs of Cats.Itay Ben-Yaacov - 2006 - Journal of Symbolic Logic 71 (3):763 - 776.
    We prove that the definition of supersimplicity in metric structures from [7] is equivalent to an a priori stronger variant. This stronger variant is then used to prove that if T is a supersimple Hausdorff cat then so is its theory of lovely pairs.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The right angle to look at orthogonal sets.Frank O. Wagner - 2016 - Journal of Symbolic Logic 81 (4):1298-1314.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theories without the tree property of the second kind.Artem Chernikov - 2014 - Annals of Pure and Applied Logic 165 (2):695-723.
    We initiate a systematic study of the class of theories without the tree property of the second kind — NTP2. Most importantly, we show: the burden is “sub-multiplicative” in arbitrary theories ; NTP2 is equivalent to the generalized Kimʼs lemma and to the boundedness of ist-weight; the dp-rank of a type in an arbitrary theory is witnessed by mutually indiscernible sequences of realizations of the type, after adding some parameters — so the dp-rank of a 1-type in any theory is (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Thorn-forking as local forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):21-38.
    A ternary relation [Formula: see text] between subsets of the big model of a complete first-order theory T is called an independence relation if it satisfies a certain set of axioms. The primary example is forking in a simple theory, but o-minimal theories are also known to have an interesting independence relation. Our approach in this paper is to treat independence relations as mathematical objects worth studying. The main application is a better understanding of thorn-forking, which turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Fondements de la logique positive.Itaï Ben Yaacov & Et Bruno Poizat - 2007 - Journal of Symbolic Logic 72 (4):1141-1162.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Positive Model Theory and Amalgamations.Mohammed Belkasmi - 2014 - Notre Dame Journal of Formal Logic 55 (2):205-230.
    We continue the analysis of foundations of positive model theory as introduced by Ben Yaacov and Poizat. The objects of this analysis are $h$-inductive theories and their models, especially the “positively” existentially closed ones. We analyze topological properties of spaces of types, introduce forms of quantifier elimination, and characterize minimal completions of arbitrary $h$-inductive theories. The main technical tools consist of various forms of amalgamations in special classes of structures.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hilbert spaces with generic groups of automorphisms.Alexander Berenstein - 2007 - Archive for Mathematical Logic 46 (3-4):289-299.
    Let G be a countable group. We prove that there is a model companion for the theory of Hilbert spaces with a group G of automorphisms. We use a theorem of Hulanicki to show that G is amenable if and only if the structure induced by countable copies of the regular representation of G is existentially closed.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Uncountable Dense Categoricity in Cats.Itay Ben-Yaacov - 2005 - Journal of Symbolic Logic 70 (3):829 - 860.
    We prove that under reasonable assumptions, every cat (compact abstract theory) is metric, and develop some of the theory of metric cats. We generalise Morley's theorem: if a countable Hausdorff cat T has a unique complete model of density character Λ ≥ ω₁, then it has a unique complete model of density character Λ for every Λ ≥ ω₁.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Positive Jonsson Theories.Bruno Poizat & Aibat Yeshkeyev - 2018 - Logica Universalis 12 (1-2):101-127.
    This paper is a general introduction to Positive Logic, where only what we call h-inductive sentences are under consideration, allowing the extension to homomorphisms of model-theoric notions which are classically associated to embeddings; in particular, the existentially closed models, that were primitively defined by Abraham Robinson, become here positively closed models. It accounts for recent results in this domain, and is oriented towards the positivisation of Jonsson theories.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The kim–pillay theorem for abstract elementary categories.Mark Kamsma - 2020 - Journal of Symbolic Logic 85 (4):1717-1741.
    We introduce the framework of AECats, generalizing both the category of models of some first-order theory and the category of subsets of models. Any AEC and any compact abstract theory forms an AECat. In particular, we find applications in positive logic and continuous logic: the category of models of a positive or continuous theory is an AECat. The Kim–Pillay theorem for first-order logic characterizes simple theories by the properties dividing independence has. We prove a version of the Kim–Pillay theorem for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Using ultrapowers to compare continuous structures.H. Jerome Keisler - forthcoming - Annals of Pure and Applied Logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Simple-like independence relations in abstract elementary classes.Rami Grossberg & Marcos Mazari-Armida - 2021 - Annals of Pure and Applied Logic 172 (7):102971.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On supersimplicity and lovely pairs of cats.Itaï Ben Yaacov - 2006 - Journal of Symbolic Logic 71 (3):763-776.
    We prove that the definition of supersimplicity in metric structures from [Ben Yaacov, Uncountable dense categoricity in cats] is equivalent to an textit{a priori} stronger variant. This stronger variant is then used to prove that if $T$ is a supersimple Hausdorff cat then so is its theory of lovely pairs.
    Download  
     
    Export citation  
     
    Bookmark   1 citation