Switch to: References

Add citations

You must login to add citations.
  1. Dimensions, matroids, and dense pairs of first-order structures.Antongiulio Fornasiero - 2011 - Annals of Pure and Applied Logic 162 (7):514-543.
    A structure M is pregeometric if the algebraic closure is a pregeometry in all structures elementarily equivalent to M. We define a generalisation: structures with an existential matroid. The main examples are superstable groups of Lascar U-rank a power of ω and d-minimal expansion of fields. Ultraproducts of pregeometric structures expanding an integral domain, while not pregeometric in general, do have a unique existential matroid. Generalising previous results by van den Dries, we define dense elementary pairs of structures expanding an (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Vector spaces with a dense-codense generic submodule.Alexander Berenstein, Christian D'Elbée & Evgueni Vassiliev - 2024 - Annals of Pure and Applied Logic 175 (7):103442.
    Download  
     
    Export citation  
     
    Bookmark  
  • Superrosiness and dense pairs of geometric structures.Gareth J. Boxall - 2023 - Archive for Mathematical Logic 63 (1):203-209.
    Let T be a complete geometric theory and let $$T_P$$ T P be the theory of dense pairs of models of T. We show that if T is superrosy with "Equation missing"-rank 1 then $$T_P$$ T P is superrosy with "Equation missing"-rank at most $$\omega $$ ω.
    Download  
     
    Export citation  
     
    Bookmark  
  • Topological fields with a generic derivation.Pablo Cubides Kovacsics & Françoise Point - 2023 - Annals of Pure and Applied Logic 174 (3):103211.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong cell decomposition property in o-minimal traces.Somayyeh Tari - 2020 - Archive for Mathematical Logic 60 (1):135-144.
    Strong cell decomposition property has been proved in non-valuational weakly o-minimal expansions of ordered groups. In this note, we show that all o-minimal traces have strong cell decomposition property. Also after introducing the notion of irrational nonvaluational cut in arbitrary o-minimal structures, we show that every expansion of o-minimal structures by irrational nonvaluational cuts is an o-minimal trace.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Orbits of subsets of the monster model and geometric theories.Enrique Casanovas & Luis Jaime Corredor - 2017 - Annals of Pure and Applied Logic 168 (12):2152-2163.
    Download  
     
    Export citation  
     
    Bookmark  
  • NIP for some pair-like theories.Gareth Boxall - 2011 - Archive for Mathematical Logic 50 (3-4):353-359.
    Generalising work of Berenstein, Dolich and Onshuus (Preprint 145 on MODNET Preprint server, 2008) and Günaydın and Hieronymi (Preprint 146 on MODNET Preprint server, 2010), we give sufficient conditions for a theory TP to inherit N I P from T, where TP is an expansion of the theory T by a unary predicate P. We apply our result to theories, studied by Belegradek and Zilber (J. Lond. Math. Soc. 78:563–579, 2008), of the real field with a subgroup of the unit (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Expansions which introduce no new open sets.Gareth Boxall & Philipp Hieronymi - 2012 - Journal of Symbolic Logic 77 (1):111 - 121.
    We consider the question of when an expansion of a first-order topological structure has the property that every open set definable in the expansion is definable in the original structure. This question has been investigated by Dolich, Miller and Steinhorn in the setting of ordered structures as part of their work on the property of having o-minimal open core. We answer the question in a fairly general setting and provide conditions which in practice are often easy to check. We give (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A criterion for the strong cell decomposition property.Somayyeh Tari - 2023 - Archive for Mathematical Logic 62 (7):871-887.
    Let $$ {\mathcal {M}}=(M, <, \ldots ) $$ be a weakly o-minimal structure. Assume that $$ {\mathcal {D}}ef({\mathcal {M}})$$ is the collection of all definable sets of $$ {\mathcal {M}} $$ and for any $$ m\in {\mathbb {N}} $$, $$ {\mathcal {D}}ef_m({\mathcal {M}}) $$ is the collection of all definable subsets of $$ M^m $$ in $$ {\mathcal {M}} $$. We show that the structure $$ {\mathcal {M}} $$ has the strong cell decomposition property if and only if there is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Expansions of o-minimal structures by dense independent sets.Alfred Dolich, Chris Miller & Charles Steinhorn - 2016 - Annals of Pure and Applied Logic 167 (8):684-706.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The independence property in generalized dense pairs of structures.Alexander Berenstein, Alf Dolich & Alf Onshuus - 2011 - Journal of Symbolic Logic 76 (2):391 - 404.
    We provide a general theorem implying that for a (strongly) dependent theory T the theory of sufficiently well-behaved pairs of models of T is again (strongly) dependent. We apply the theorem to the case of lovely pairs of thorn-rank one theories as well as to a setting of dense pairs of first-order topological theories.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Definable groups in dense pairs of geometric structures.Alexander Berenstein & Evgueni Vassiliev - 2022 - Archive for Mathematical Logic 61 (3):345-372.
    We study definable groups in dense/codense expansions of geometric theories with a new predicate P such as lovely pairs and expansions of fields by groups with the Mann property. We show that in such expansions, large definable subgroups of groups definable in the original language \ are also \-definable, and definably amenable \-definable groups remain amenable in the expansion. We also show that if the underlying geometric theory is NIP, and G is a group definable in a model of T, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Weakly one-based geometric theories.Alexander Berenstein & Evgueni Vassiliev - 2012 - Journal of Symbolic Logic 77 (2):392-422.
    We study the class of weakly locally modular geometric theories introduced in [4], a common generalization of the classes of linear SU-rank 1 and linear o-minimal theories. We find new conditions equivalent to weak local modularity: "weak one-basedness", absence of type definable "almost quasidesigns", and "generic linearity". Among other things, we show that weak one-basedness is closed under reducts. We also show that the lovely pair expansion of a non-trivial weakly one-based ω-categorical geometric theory interprets an infinite vector space over (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Fields with a dense-codense linearly independent multiplicative subgroup.Alexander Berenstein & Evgueni Vassiliev - 2020 - Archive for Mathematical Logic 59 (1-2):197-228.
    We study expansions of an algebraically closed field K or a real closed field R with a linearly independent subgroup G of the multiplicative group of the field or the unit circle group \\), satisfying a density/codensity condition. Since the set G is neither algebraically closed nor algebraically independent, the expansion can be viewed as “intermediate” between the two other types of dense/codense expansions of geometric theories: lovely pairs and H-structures. We show that in both the algebraically closed field and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Weak One-Basedness.Gareth Boxall, David Bradley-Williams, Charlotte Kestner, Alexandra Omar Aziz & Davide Penazzi - 2013 - Notre Dame Journal of Formal Logic 54 (3-4):435-448.
    We study the notion of weak one-basedness introduced in recent work of Berenstein and Vassiliev. Our main results are that this notion characterizes linearity in the setting of geometric þ-rank 1structures and that lovely pairs of weakly one-based geometric þ-rank 1 structures are weakly one-based with respect to þ-independence. We also study geometries arising from infinite-dimensional vector spaces over division rings.
    Download  
     
    Export citation  
     
    Bookmark  
  • Supersimple structures with a dense independent subset.Alexander Berenstein, Juan Felipe Carmona & Evgueni Vassiliev - 2017 - Mathematical Logic Quarterly 63 (6):552-573.
    Based on the work done in [][] in the o‐minimal and geometric settings, we study expansions of models of a supersimple theory with a new predicate distiguishing a set of forking‐independent elements that is dense inside a partial type, which we call H‐structures. We show that any two such expansions have the same theory and that under some technical conditions, the saturated models of this common theory are again H‐structures. We prove that under these assumptions the expansion is supersimple and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Expansions which introduce no new open sets.Gareth Boxall & Philipp Hieromyni - 2012 - Journal of Symbolic Logic 77 (1):111-121.
    We consider the question of when an expansion of a first-order topological structure has the property that every open set definable in the expansion is definable in the original structure. This question has been investigated by Dolich, Miller and Steinhorn in the setting of ordered structures as part of their work on the property of having o-minimal open core. We answer the question in a fairly general setting and provide conditions which in practice are often easy to check. We give (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Generic trivializations of geometric theories.Alexander Berenstein & Evgueni Vassiliev - 2014 - Mathematical Logic Quarterly 60 (4-5):289-303.
    We study the theory of the structure induced by parameter free formulas on a “dense” algebraically independent subset of a model of a geometric theory T. We show that while being a trivial geometric theory, inherits most of the model theoretic complexity of T related to stability, simplicity, rosiness, the NIP and the NTP2. In particular, we show that T is strongly minimal, supersimple of SU‐rank 1, has the NIP or the NTP2 exactly when has these properties. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forking geometry on theories with an independent predicate.Juan Felipe Carmona - 2015 - Archive for Mathematical Logic 54 (1-2):247-255.
    We prove that a simple theory of SU-rank 1 is n-ample if and only if the associated theory equipped with a predicate for an independent dense subset is n-ample for n at least 2.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A preservation theorem for theories without the tree property of the first kind.Jan Dobrowolski & Hyeungjoon Kim - 2017 - Mathematical Logic Quarterly 63 (6):536-543.
    We prove the NTP1 property of a geometric theory T is inherited by theories of lovely pairs and H‐structures associated to T. We also provide a class of examples of nonsimple geometric NTP1 theories.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dense codense predicates and the NTP 2.Alexander Berenstein & Hyeung-Joon Kim - 2016 - Mathematical Logic Quarterly 62 (1-2):16-24.
    We show that if T is any geometric theory having the NTP2 then the corresponding theories of lovely pairs of models of T and of H‐structures associated to T also have the NTP2. We also prove that if T is strong then the same two expansions of T are also strong.
    Download  
     
    Export citation  
     
    Bookmark   4 citations