Switch to: References

Add citations

You must login to add citations.
  1. On the Euler characteristic of definable groups.Mário J. Edmundo - 2011 - Mathematical Logic Quarterly 57 (1):44-46.
    We show that in an arbitrary o-minimal structure the following are equivalent: conjugates of a definable subgroup of a definably connected, definably compact definable group cover the group if the o-minimal Euler characteristic of the quotient is non zero; every infinite, definably connected, definably compact definable group has a non trivial torsion point.
    Download  
     
    Export citation  
     
    Bookmark  
  • A descending chain condition for groups definable in o -minimal structures.Alessandro Berarducci, Margarita Otero, Yaa’cov Peterzil & Anand Pillay - 2005 - Annals of Pure and Applied Logic 134 (2):303-313.
    We prove that if G is a group definable in a saturated o-minimal structure, then G has no infinite descending chain of type-definable subgroups of bounded index. Equivalently, G has a smallest type-definable subgroup G00 of bounded index and G/G00 equipped with the “logic topology” is a compact Lie group. These results give partial answers to some conjectures of the fourth author.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Definably compact Abelian groups.Mário J. Edmundo & Margarita Otero - 2004 - Journal of Mathematical Logic 4 (02):163-180.
    Let M be an o-minimal expansion of a real closed field. Let G be a definably compact definably connected abelian n-dimensional group definable in M. We show the following: the o-minimal fundamental group of G is isomorphic to ℤn; for each k>0, the k-torsion subgroup of G is isomorphic to n, and the o-minimal cohomology algebra over ℚ of G is isomorphic to the exterior algebra over ℚ with n generators of degree one.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • G-linear sets and torsion points in definably compact groups.Margarita Otero & Ya’Acov Peterzil - 2009 - Archive for Mathematical Logic 48 (5):387-402.
    Let G be a definably compact group in an o-minimal expansion of a real closed field. We prove that if dim(G\X) < dim G for some definable ${X \subseteq G}$ then X contains a torsion point of G. Along the way we develop a general theory for the so-called G-linear sets, and investigate definable sets which contain abstract subgroups of G.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Fundamental group in o-minimal structures with definable Skolem functions.Bruno Dinis, Mário J. Edmundo & Marcello Mamino - 2021 - Annals of Pure and Applied Logic 172 (8):102975.
    In this paper we work in an arbitrary o-minimal structure with definable Skolem functions and prove that definably connected, locally definable manifolds are uniformly definably path connected, have an admissible cover by definably simply connected, open definable subsets and, definable paths and definable homotopies on such locally definable manifolds can be lifted to locally definable covering maps. These properties allow us to obtain the main properties of the general o-minimal fundamental group, including: invariance and comparison results; existence of universal locally (...)
    Download  
     
    Export citation  
     
    Bookmark