Switch to: References

Add citations

You must login to add citations.
  1. Stable Formulas in Intuitionistic Logic.Nick Bezhanishvili & Dick de Jongh - 2018 - Notre Dame Journal of Formal Logic 59 (3):307-324.
    In 1995 Visser, van Benthem, de Jongh, and Renardel de Lavalette introduced NNIL-formulas, showing that these are exactly the formulas preserved under taking submodels of Kripke models. In this article we show that NNIL-formulas are up to frame equivalence the formulas preserved under taking subframes of frames, that NNIL-formulas are subframe formulas, and that subframe logics can be axiomatized by NNIL-formulas. We also define a new syntactic class of ONNILLI-formulas. We show that these are the formulas preserved in monotonic images (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Admissible rules for six intuitionistic modal logics.Iris van der Giessen - 2023 - Annals of Pure and Applied Logic 174 (4):103233.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Categories of models of R-mingle.Wesley Fussner & Nick Galatos - 2019 - Annals of Pure and Applied Logic 170 (10):1188-1242.
    We give a new Esakia-style duality for the category of Sugihara monoids based on the Davey-Werner natural duality for lattices with involution, and use this duality to greatly simplify a construction due to Galatos-Raftery of Sugihara monoids from certain enrichments of their negative cones. Our method of obtaining this simplification is to transport the functors of the Galatos-Raftery construction across our duality, obtaining a vastly more transparent presentation on duals. Because our duality extends Dunn's relational semantics for the logic R-mingle (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Intuitionistic Modal Algebras.Sergio A. Celani & Umberto Rivieccio - 2024 - Studia Logica 112 (3):611-660.
    Recent research on algebraic models of _quasi-Nelson logic_ has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a _nucleus_. Among these various algebraic structures, for which we employ the umbrella term _intuitionistic modal algebras_, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive operations (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Admissible Rules of ${{mathsf{BD}_{2}}}$ and ${mathsf{GSc}}$.Jeroen P. Goudsmit - 2018 - Notre Dame Journal of Formal Logic 59 (3):325-353.
    The Visser rules form a basis of admissibility for the intuitionistic propositional calculus. We show how one can characterize the existence of covers in certain models by means of formulae. Through this characterization, we provide a new proof of the admissibility of a weak form of the Visser rules. Finally, we use this observation, coupled with a description of a generalization of the disjunction property, to provide a basis of admissibility for the intermediate logics BD2 and GSc.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frame Based Formulas for Intermediate Logics.Nick Bezhanishvili - 2008 - Studia Logica 90 (2):139-159.
    In this paper we define the notion of frame based formulas. We show that the well-known examples of formulas arising from a finite frame, such as the Jankov-de Jongh formulas, subframe formulas and cofinal subframe formulas, are all particular cases of the frame based formulas. We give a criterion for an intermediate logic to be axiomatizable by frame based formulas and use this criterion to obtain a simple proof that every locally tabular intermediate logic is axiomatizable by Jankov-de Jongh formulas. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An Algebraic Approach to Canonical Formulas: Intuitionistic Case.Guram Bezhanishvili - 2009 - Review of Symbolic Logic 2 (3):517.
    We introduce partial Esakia morphisms, well partial Esakia morphisms, and strong partial Esakia morphisms between Esakia spaces and show that they provide the dual description of (∧, →) homomorphisms, (∧, →, 0) homomorphisms, and (∧, →, ∨) homomorphisms between Heyting algebras, thus establishing a generalization of Esakia duality. This yields an algebraic characterization of Zakharyaschev’s subreductions, cofinal subreductions, dense subreductions, and the closed domain condition. As a consequence, we obtain a new simplified proof (which is algebraic in nature) of Zakharyaschev’s (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Hereditarily Structurally Complete Intermediate Logics: Citkin’s Theorem Via Duality.Nick Bezhanishvili & Tommaso Moraschini - 2023 - Studia Logica 111 (2):147-186.
    A deductive system is said to be structurally complete if its admissible rules are derivable. In addition, it is called hereditarily structurally complete if all its extensions are structurally complete. Citkin (1978) proved that an intermediate logic is hereditarily structurally complete if and only if the variety of Heyting algebras associated with it omits five finite algebras. Despite its importance in the theory of admissible rules, a direct proof of Citkin’s theorem is not widely accessible. In this paper we offer (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Canonical formulas for wk4.Guram Bezhanishvili & Nick Bezhanishvili - 2012 - Review of Symbolic Logic 5 (4):731-762.
    We generalize the theory of canonical formulas for K4, the logic of transitive frames, to wK4, the logic of weakly transitive frames. Our main result establishes that each logic over wK4 is axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s theorem for logics over K4. The key new ingredients include the concepts of transitive and strongly cofinal subframes of weakly transitive spaces. This yields, along with the standard notions of subframe and cofinal subframe logics, the new notions of transitive subframe and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An Algebraic Approach to Canonical Formulas: Modal Case.Guram Bezhanishvili & Nick Bezhanishvili - 2011 - Studia Logica 99 (1-3):93-125.
    We introduce relativized modal algebra homomorphisms and show that the category of modal algebras and relativized modal algebra homomorphisms is dually equivalent to the category of modal spaces and partial continuous p-morphisms, thus extending the standard duality between the category of modal algebras and modal algebra homomorphisms and the category of modal spaces and continuous p-morphisms. In the transitive case, this yields an algebraic characterization of Zakharyaschev’s subreductions, cofinal subreductions, dense subreductions, and the closed domain condition. As a consequence, we (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Continuity, freeness, and filtrations.Silvio Ghilardi - 2010 - Journal of Applied Non-Classical Logics 20 (3):193-217.
    The role played by continuous morphisms in propositional modal logic is investigated: it turns out that they are strictly related to filtrations and to suitable variants of the notion of a free algebra. We also employ continuous morphisms in incremental constructions of (standard) finitely generated free ????4-algebras.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An Algebraic Approach to Subframe Logics. Modal Case.Guram Bezhanishvili, Silvio Ghilardi & Mamuka Jibladze - 2011 - Notre Dame Journal of Formal Logic 52 (2):187-202.
    We prove that if a modal formula is refuted on a wK4-algebra ( B ,□), then it is refuted on a finite wK4-algebra which is isomorphic to a subalgebra of a relativization of ( B ,□). As an immediate consequence, we obtain that each subframe and cofinal subframe logic over wK4 has the finite model property. On the one hand, this provides a purely algebraic proof of the results of Fine and Zakharyaschev for K4 . On the other hand, it (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations